गणितीय नियतांक

testwiki से
imported>Sa6h9hheje द्वारा परिवर्तित १२:५२, १३ नवम्बर २०२२ का अवतरण (नियतांक एवं श्रेणियाँ)
(अंतर) ← पुराना अवतरण | वर्तमान अवतरण (अंतर) | नया अवतरण → (अंतर)
नेविगेशन पर जाएँ खोज पर जाएँ

गणितीय नियतांक (mathematical constant) वह संख्या (प्राय: वास्तविक संख्या) है जो गणित में स्वभावत: उत्पन्न होती हैं। उदाहरण - पाई (π), आयलर संख्या ई (e) आदि।

नियतांक एवं श्रेणियाँ

—तालिका संरचना--

(octonion)

    • 𝕊 - sedenions

इस सूची के 'मान', 'नाम', 'OEIS' आदि पर क्लिक करके इस सूची को आवश्यकतानुसार क्रमित (ordered) कर सकते हैं।

मान नाम संकेत लैटेक्स सूत्र OEIS सतत भिन्न
3.62560990822190831193068515586767200 गामा (1/4)[] Γ(14) 4(14)!=(34)! Γ(1/4)! T A068466 [3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...]
0.95531661812450927816385710251575775 जादुई कोण (Magic angle)[] θm arctan(2)=arccos(13)54.7356 arctan(sqrt(2)) I A195696 [0;1,21,2,1,1,1,2,1,2,2,4,1,2,9,1,2,1,1,1,3,...]
1.44466786100976613365833910859643022 Steiner number, Iterated Exponential Constant[] e1e e1e........... = Upper Limit of Tetration e^(1/e) T A073229 [1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...]
0.69220062755534635386542199718278976 Minimum value of función
ƒ(x) = xx[]
(1e)1e e1e.......... = Inverse Steiner Number e^(-1/e) T A072364 [0;1,2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...]
0.34053732955099914282627318443290289 Pólya Random Walk constant[] p(3) 1(3(2π)3ππππππdxdydz3cosxcosycosz)1

=11623π3(Γ(124)Γ(524)Γ(724)Γ(1124))1

1-16*Sqrt[2/3]*Pi^3
/((Gamma[1/24]
*Gamma[5/24]
*Gamma[7/24]
*Gamma[11/24])
T A086230 [0;2,1,14,1,3,8,1,5,2,7,1,12,1,5,59,1,1,1,3,...]
0.54325896534297670695272829530061323 Bloch-Landau constant[] L =Γ(13)Γ(56)Γ(16)=(23)!(1+56)!(1+16)! gamma(1/3)
*gamma(5/6)
/gamma(1/6)
T A081760 [0;1,1,5,3,1,1,2,1,1,6,3,1,8,11,2,1,1,27,4,...]
0.18785964246206712024851793405427323 MRB Constant, Marvin Ray Burns[][][] CMRB n=1(1)n(n1/n1)=11+2233+44... Sum[n=1 to ∞]
{(-1)^n (n^(1/n)-1)}
T A037077 [0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...]
0.74759792025341143517873094383017817 Rényi's Parking Constant[१०] m 0exp(20x1eyydy)dx=e2γ0e2Γ(0,n)n2 [e^(-2*Gamma)]
* Int{n,0,∞}[ e^(- 2
*Gamma(0,n)) /n^2]
T A050996 [0;1,2,1,25,3,1,2,1,1,12,1,2,1,1,3,1,2,1,43,...]
1.27323954473516268615107010698011489 रामानुजन-फोर्सिथ श्रेणी[११] 4π n=0((2n3)!!(2n)!!)2=1+(12)2+(124)2+(13246)2+... Sum[n=0 to ∞]
{[(2n-3)!!
/(2n)!!]^2}
T A088538 [1;3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...]
1.46707807943397547289779848470722995 Porter Constant[१२] C 6ln2π2(3ln2+4γ24π2ζ(2)2)12

γ= Euler–Mascheroni Constant = 0,5772156649... ζ(2)= Derivative of ζ(2)=n=2lnnn2= −0,9375482543...

6*ln2/Pi^2(3*ln2+ 4 EulerGamma- WeierstrassZeta'(2) *24/Pi^2-2)-1/2 T A086237 [1;2,7,10,1,2,38,5,4,1,4,12,5,1,5,1,2,3,1,...]
4.66920160910299067185320382046620161 Feigenbaum constant δ[१३] δ limnxn+1xnxn+2xn+1x(3,8284;3,8495)

xn+1=axn(1xn)orxn+1=asin(xn)

T A006890 [4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...]
2.50290787509589282228390287321821578 Feigenbaum constant α[१४] α limndndn+1 T A006891 [2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...]
0.62432998854355087099293638310083724 Golomb–Dickman constant[१५] λ 0f(x)x2dxParax>2=01eLi(n)dnLi: Logarithmic integral N[Int{n,0,1}[e^Li(n)],34] T A084945 [0;1,1,1,1,1,22,1,2,3,1,1,11,1,1,2,22,2,6,1,...]
23.1406926327792690057290863679485474 Gelfond constant[१६] eπ n=0πnn!=π11+π22!+π33!+π44!+ Sum[n=0 to ∞]
{(pi^n)/n!}
T A039661 [23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...]
7.38905609893065022723042746057500781 शंकु नियतांक (Conic constant), Schwarzschild constant[१७] e2 n=02nn!=1+2+222!+233!+244!+255!+... Sum[n=0 to ∞]
{2^n/n!}
T A072334 [7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...]
= [7,2, (1,1,n,4*n+6,n+2)], n = 3, 6, 9, etc.
0.35323637185499598454351655043268201 Hafner-Sarnak-McCurley constant (1)[१८] σ k=1{1[1j=1n(1pkj)]2pk:prime} prod[k=1 to ∞] {1-(1-prod[j=1 to n] {1-ithprime(k)^-j})^2} T A085849 [0;2,1,4,1,10,1,8,1,4,1,2,1,2,1,2,6,1,1,1,3,...]
0.60792710185402662866327677925836583 Hafner-Sarnak-McCurley constant (2)[१९] 1ζ(2) 6π2=n=0(11pn2)pn:prime=(1122)(1132)(1152)... Prod{n=1 to ∞}
(1-1/ithprime
(n)^2)
T A059956 [0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...]
1.58496250072115618145373894394781651 Hausdorff dimension, Sierpinski triangle[२०] log23 log3log2=n=0122n+1(2n+1)n=0132n+1(2n+1)=12+124+1160+...13+181+11215+... (Sum[n=0 to ∞] {1/
(2^(2n+1) (2n+1))})/
(Sum[n=0 to ∞] {1/
(3^(2n+1) (2n+1))})
T A020857 [1;1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...]
0.12345678910111213141516171819202123 Champernowne constant[२१] C10 n=1k=10n110n1k10kn9j=0n110j(nj1) T A033307 [0;8,9,1,149083,1,1,1,4,1,1,1,3,4,1,1,1,15,...]
0.76422365358922066299069873125009232 Landau-Ramanujan constant[२२] K 12p3mod4(11p2)12p:prime=π4p1mod4(11p2)12p:prime T A064533 [0;1,3,4,6,1,15,1,2,2,3,1,23,3,1,1,3,1,1,6,4,...]
0.11000100000000000000000100... Liouville number[२३] £Li n=1110n!=1101!+1102!+1103!+1104!+... Sum[n=1 to ∞]
{10^(-n!)}
T A012245 [1;9,1,999,10,9999999999999,1,9,999,1,9]
१.९२८७८००... राइट नियतांक (Wright constant)[२४] ω 2222ω= primes:2ω=3,22ω=13,222ω=16381, ... A086238 [1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3]
2.71828182845904523536028747135266250 Number e, Euler's number[२५] e limn(1+1n)n=n=01n!=10!+11+12!+13!+... Sum[n=0 to ∞]
{1/n!}
T A001113 [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...]
= [2;(1,2p,1)], p∈ℕ
0.36787944117144232159552377016146086 Reverse of Number e[२६] 1e n=0(1)nn!=10!11!+12!13!+14!15!+... Sum[n=2 to ∞]
{(-1)^n/n!}
T A068985 [0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...]
= [0;2,1, (1,2p,1)], p∈ℕ
0.6903471261... Upper iterated exponential[२७] H2n+1 limnH2n+1=(12)(13)(14)(12n+1)=2342n1 2^-3^-4^-5^-6^
-7^-8^-9^-10^
-11^-12^-13 …
T [0;1,2,4,2,1,3,1,2,2,1,4,1,2,4,61,5,...]
0.6583655992... Lower límit iterated exponential[२८] H2n limnH2n=(12)(13)(14)(12n)=2342n 2^-3^-4^-5^-6^
-7^-8^-9^-10^
-11^-12 …
T [0;1,1,1,12,1,2,1,1,4,3,1,1,2,1,2,1,51,2,2,1,...]
0.63661977236758134307553505349005745 /π, François Viète product[२९] 2π 222+222+2+22 T A060294 [0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...]
3.14159265358979323846264338327950288 π संख्या, Archimedes number[३०] π limn2n22+2+...+2n Sum[n=0 to ∞]
{(-1)^n 4/(2n+1)}
T A000796 [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...]
1.902160583104 Brun 2 constant = Σ inverse of Twin primes[३१] B2 (1p+1p+2)p,p+2:prime=(13+15)+(15+17)+(111+113)+... A065421 [1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2]
0.870588379975 Brun 4 constant = Σ inv.prime quadruplets B4 (1p+1p+2+1p+4+1p+6)p,p+2,p+4,p+6:prime

(15+17+111+113)+(111+113+117+119)+

A213007 [0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1]
0.46364760900080611621425623146121440 Machin-Gregory serie[३२] arctan12 n=0(1)nx2n+12n+1=121323+15251727+...Forx=1/2 Sum[n=0 to ∞]
{(-1)^n (1/2)^(2n+1)/(2n+1)}
T A073000 [0;2,6,2,1,1,1,6,1,2,1,1,2,10,1,2,1,2,1,1,1,...]
0.59634736232319407434107849936927937 Euler-Gompertz constant[३३] G 0en1+ndn=0111lnndn=11+11+11+21+21+31+31+4/... integral[0 to ∞]
{(e^-n)/(1+n)}
T A073003 [0;1,1,2,10,1,1,4,2,2,13,2,4,1,32,4,8,1,1,1,...]
0.69777465796400798200679059255175260 Continued fraction constant, Bessel function CCF I1(2)I0(2)=n=0nn!n!n=01n!n!=11+12+13+14+15+16+1/... (Sum [n=0 to ∞]
{n/(n!n!)}) /
(Sum [n=0 to ∞]
{1/(n!n!)})
A052119 [0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...]
= [0;(p+1)], p∈ℕ
0.43828293672703211162697516355126482
+ 0.36059247187138548595294052690600 i
अनंत
टिट्रेशन/Tetration
i का
i limnni=limniiiin=2πiW(π2i)W:Lambertfunction (2/Pi) i ProductLog[-((Pi/2) i)]

C

A077589
A077590
[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...]
+ [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i
2.74723827493230433305746518613420282 Ramanujan nested radical[३४] R5 5+5+55+5+5+5=2+5+15652 (2+sqrt(5)
+sqrt(15
-6 sqrt(5)))/2
I [2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...]
1.01494160640965362502120255427452028 Gieseking constant πlnβ 334(1n=01(3n+2)2+n=11(3n+1)2)=

334(1122+142152+172182+1102±...).

sqrt(3)*3/4 *(1
-Sum[n=0 to ∞]
{1/((3n+2)^2)}
+Sum[n=1 to ∞]
{1/((3n+1)^2)})
T A143298 [1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...]
1.66168794963359412129581892274995074 Somos' quadratic recurrence constant σ n=1n1/2n=123=11/221/431/8 prod[n=1 to ∞]
{n ^(1/2)^n}
T A065481 [1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...]
0.56714329040978387299996866221035555 Omega constant, Lambert W function Ω n=1(n)n1n!=(1e)(1e)(1e)=eΩ=eeee Sum[n=1 to ∞]
{(-n)^(n-1)/n!}
A030178 [0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,2,1,...]
0.96894614625936938048363484584691860 Beta(3)[३५] β(3) π332=n=11n+1(1+2n)3=113133+153173+... Sum[n=1 to ∞]
{(-1)^(n+1)
/(-1+2n)^3}
T A153071 [0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...]
2.23606797749978969640917366873127624 Square root of 5, Gauss sum[३६] 5 (n=5)k=0n1e2k2πin=1+e2πi5+e8πi5+e18πi5+e32πi5 Sum[k=0 to 4]
{e^(2k^2 pi i/5)}
I A002163 [2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...]
= [2;(4),...]
3.35988566624317755317201130291892717 Prévost constant Ψ n=11Fn=11+11+12+13+15+18+113+

Fn: Fibonacci series

Sum[n=1 to ∞]
{1/Fibonacci[n]}
I A079586 [3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...]
2.68545200106530644530971483548179569 Khinchin's constant[३७] K0 n=1[1+1n(n+2)]lnn/ln2 Prod[n=1 to ∞]
{(1+1/(n(n+2)))
^(ln(n)/ln(2))}
? A002210 [2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...]

सन्दर्भ

साँचा:टिप्पणीसूची

बाहरी कड़ियाँ