गणितीय नियतांक
गणितीय नियतांक (mathematical constant) वह संख्या (प्राय: वास्तविक संख्या) है जो गणित में स्वभावत: उत्पन्न होती हैं। उदाहरण - पाई (π), आयलर संख्या ई (e) आदि।
नियतांक एवं श्रेणियाँ
—तालिका संरचना--
- मान : नियतांक का संख्यात्मक मान
- लैटेक्स (LaTeX): TeX प्रारूप में सूत्र या श्रेणी
- सूत्र: मैथमैटिका (Mathematica) या वुल्फ्रैम अल्फा (Wolfram Alpha) आदि में प्रयोग के लिए
- OEIS: On-Line Encyclopedia of Integer Sequences
- सतत भिन्न: सरल प्रारूप [to integer; frac1, frac2, frac3, ...] में। (यदि आवर्ती हो तो कोष्टक में)
- Nº:
- - पूर्णांक
- - परिमेय संख्या
- - अपरिमेय संख्या
- - प्रागनुभविक संख्या (Transcendental number)
- - समिश्र संख्या (complex number)
- -क्वाटरनीयोन्ज़ (Quarternions)
- - ऑक्टोनॉट्स/ऑक्टोनीयन
(octonion)
- - sedenions
इस सूची के 'मान', 'नाम', 'OEIS' आदि पर क्लिक करके इस सूची को आवश्यकतानुसार क्रमित (ordered) कर सकते हैं।
| मान | नाम | संकेत | लैटेक्स | सूत्र | Nº | OEIS | सतत भिन्न |
|---|---|---|---|---|---|---|---|
| 3.62560990822190831193068515586767200 | गामा (1/4)[१] | Γ(1/4)! | T | A068466 | [3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...] | ||
| 0.95531661812450927816385710251575775 | जादुई कोण (Magic angle)[२] | arctan(sqrt(2)) | I | A195696 | [0;1,21,2,1,1,1,2,1,2,2,4,1,2,9,1,2,1,1,1,3,...] | ||
| 1.44466786100976613365833910859643022 | Steiner number, Iterated Exponential Constant[३] | = Upper Limit of Tetration | e^(1/e) | T | A073229 | [1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] | |
| 0.69220062755534635386542199718278976 | Minimum value of función ƒ(x) = xx[४] |
= Inverse Steiner Number | e^(-1/e) | T | A072364 | [0;1,2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] | |
| 0.34053732955099914282627318443290289 | Pólya Random Walk constant[५] |
|
1-16*Sqrt[2/3]*Pi^3 /((Gamma[1/24] *Gamma[5/24] *Gamma[7/24] *Gamma[11/24]) |
T | A086230 | [0;2,1,14,1,3,8,1,5,2,7,1,12,1,5,59,1,1,1,3,...] | |
| 0.54325896534297670695272829530061323 | Bloch-Landau constant[६] | gamma(1/3) *gamma(5/6) /gamma(1/6) |
T | A081760 | [0;1,1,5,3,1,1,2,1,1,6,3,1,8,11,2,1,1,27,4,...] | ||
| 0.18785964246206712024851793405427323 | MRB Constant, Marvin Ray Burns[७][८][९] | Sum[n=1 to ∞] {(-1)^n (n^(1/n)-1)} |
T | A037077 | [0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...] | ||
| 0.74759792025341143517873094383017817 | Rényi's Parking Constant[१०] | [e^(-2*Gamma)] * Int{n,0,∞}[ e^(- 2 *Gamma(0,n)) /n^2] |
T | A050996 | [0;1,2,1,25,3,1,2,1,1,12,1,2,1,1,3,1,2,1,43,...] | ||
| 1.27323954473516268615107010698011489 | रामानुजन-फोर्सिथ श्रेणी[११] | Sum[n=0 to ∞] {[(2n-3)!! /(2n)!!]^2} |
T | A088538 | [1;3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...] | ||
| 1.46707807943397547289779848470722995 | Porter Constant[१२] |
|
6*ln2/Pi^2(3*ln2+ 4 EulerGamma- WeierstrassZeta'(2) *24/Pi^2-2)-1/2 | T | A086237 | [1;2,7,10,1,2,38,5,4,1,4,12,5,1,5,1,2,3,1,...] | |
| 4.66920160910299067185320382046620161 | Feigenbaum constant δ[१३] |
|
T | A006890 | [4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...] | ||
| 2.50290787509589282228390287321821578 | Feigenbaum constant α[१४] | T | A006891 | [2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...] | |||
| 0.62432998854355087099293638310083724 | Golomb–Dickman constant[१५] | N[Int{n,0,1}[e^Li(n)],34] | T | A084945 | [0;1,1,1,1,1,22,1,2,3,1,1,11,1,1,2,22,2,6,1,...] | ||
| 23.1406926327792690057290863679485474 | Gelfond constant[१६] | Sum[n=0 to ∞] {(pi^n)/n!} |
T | A039661 | [23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...] | ||
| 7.38905609893065022723042746057500781 | शंकु नियतांक (Conic constant), Schwarzschild constant[१७] | Sum[n=0 to ∞] {2^n/n!} |
T | A072334 | [7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...] = [7,2, (1,1,n,4*n+6,n+2)], n = 3, 6, 9, etc. | ||
| 0.35323637185499598454351655043268201 | Hafner-Sarnak-McCurley constant (1)[१८] | prod[k=1 to ∞] {1-(1-prod[j=1 to n] {1-ithprime(k)^-j})^2} | T | A085849 | [0;2,1,4,1,10,1,8,1,4,1,2,1,2,1,2,6,1,1,1,3,...] | ||
| 0.60792710185402662866327677925836583 | Hafner-Sarnak-McCurley constant (2)[१९] | Prod{n=1 to ∞} (1-1/ithprime (n)^2) |
T | A059956 | [0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...] | ||
| 1.58496250072115618145373894394781651 | Hausdorff dimension, Sierpinski triangle[२०] | (Sum[n=0 to ∞] {1/ (2^(2n+1) (2n+1))})/ (Sum[n=0 to ∞] {1/ (3^(2n+1) (2n+1))}) |
T | A020857 | [1;1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] | ||
| 0.12345678910111213141516171819202123 | Champernowne constant[२१] | T | A033307 | [0;8,9,1,149083,1,1,1,4,1,1,1,3,4,1,1,1,15,...] | |||
| 0.76422365358922066299069873125009232 | Landau-Ramanujan constant[२२] | T | A064533 | [0;1,3,4,6,1,15,1,2,2,3,1,23,3,1,1,3,1,1,6,4,...] | |||
| 0.11000100000000000000000100... | Liouville number[२३] | Sum[n=1 to ∞] {10^(-n!)} |
T | A012245 | [1;9,1,999,10,9999999999999,1,9,999,1,9] | ||
| १.९२८७८००... | राइट नियतांक (Wright constant)[२४] | A086238 | [1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3] | ||||
| 2.71828182845904523536028747135266250 | Number e, Euler's number[२५] | Sum[n=0 to ∞] {1/n!} |
T | A001113 | [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...] = [2;(1,2p,1)], p∈ℕ | ||
| 0.36787944117144232159552377016146086 | Reverse of Number e[२६] | Sum[n=2 to ∞] {(-1)^n/n!} |
T | A068985 | [0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...] = [0;2,1, (1,2p,1)], p∈ℕ | ||
| 0.6903471261... | Upper iterated exponential[२७] | 2^-3^-4^-5^-6^ -7^-8^-9^-10^ -11^-12^-13 … |
T | [0;1,2,4,2,1,3,1,2,2,1,4,1,2,4,61,5,...] | |||
| 0.6583655992... | Lower límit iterated exponential[२८] | 2^-3^-4^-5^-6^ -7^-8^-9^-10^ -11^-12 … |
T | [0;1,1,1,12,1,2,1,1,4,3,1,1,2,1,2,1,51,2,2,1,...] | |||
| 0.63661977236758134307553505349005745 | २/π, François Viète product[२९] | T | A060294 | [0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...] | |||
| 3.14159265358979323846264338327950288 | π संख्या, Archimedes number[३०] | Sum[n=0 to ∞] {(-1)^n 4/(2n+1)} |
T | A000796 | [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...] | ||
| 1.902160583104 | Brun 2 constant = Σ inverse of Twin primes[३१] | A065421 | [1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2] | ||||
| 0.870588379975 | Brun 4 constant = Σ inv.prime quadruplets |
|
A213007 | [0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1] | |||
| 0.46364760900080611621425623146121440 | Machin-Gregory serie[३२] | Sum[n=0 to ∞] {(-1)^n (1/2)^(2n+1)/(2n+1)} |
T | A073000 | [0;2,6,2,1,1,1,6,1,2,1,1,2,10,1,2,1,2,1,1,1,...] | ||
| 0.59634736232319407434107849936927937 | Euler-Gompertz constant[३३] | integral[0 to ∞] {(e^-n)/(1+n)} |
T | A073003 | [0;1,1,2,10,1,1,4,2,2,13,2,4,1,32,4,8,1,1,1,...] | ||
| 0.69777465796400798200679059255175260 | Continued fraction constant, Bessel function | (Sum [n=0 to ∞] {n/(n!n!)}) / (Sum [n=0 to ∞] {1/(n!n!)}) |
A052119 | [0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...] = [0;(p+1)], p∈ℕ | |||
| 0.43828293672703211162697516355126482 + 0.36059247187138548595294052690600 i |
अनंत टिट्रेशन/Tetration i का |
(2/Pi) i ProductLog[-((Pi/2) i)] | A077589 A077590 |
[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...] + [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i | |||
| 2.74723827493230433305746518613420282 | Ramanujan nested radical[३४] | (2+sqrt(5) +sqrt(15 -6 sqrt(5)))/2 |
I | [2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...] | |||
| 1.01494160640965362502120255427452028 | Gieseking constant | . |
sqrt(3)*3/4 *(1 -Sum[n=0 to ∞] {1/((3n+2)^2)} +Sum[n=1 to ∞] {1/((3n+1)^2)}) |
T | A143298 | [1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...] | |
| 1.66168794963359412129581892274995074 | Somos' quadratic recurrence constant | prod[n=1 to ∞] {n ^(1/2)^n} |
T | A065481 | [1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...] | ||
| 0.56714329040978387299996866221035555 | Omega constant, Lambert W function | Sum[n=1 to ∞] {(-n)^(n-1)/n!} |
A030178 | [0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,2,1,...] | |||
| 0.96894614625936938048363484584691860 | Beta(3)[३५] | Sum[n=1 to ∞] {(-1)^(n+1) /(-1+2n)^3} |
T | A153071 | [0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...] | ||
| 2.23606797749978969640917366873127624 | Square root of 5, Gauss sum[३६] | Sum[k=0 to 4] {e^(2k^2 pi i/5)} |
I | A002163 | [2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...] = [2;(4),...] | ||
| 3.35988566624317755317201130291892717 | Prévost constant |
Fn: Fibonacci series |
Sum[n=1 to ∞] {1/Fibonacci[n]} |
I | A079586 | [3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...] | |
| 2.68545200106530644530971483548179569 | Khinchin's constant[३७] | Prod[n=1 to ∞] {(1+1/(n(n+2))) ^(ln(n)/ln(2))} |
? | A002210 | [2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...] |
सन्दर्भ
बाहरी कड़ियाँ
- Constants - from Wolfram MathWorld
- Inverse symbolic calculator (CECM, ISC) (tells you how a given number can be constructed from mathematical constants)
- On-Line Encyclopedia of Integer Sequences (OEIS)
- Simon Plouffe's inverter
- Steven Finch's page of mathematical constants
- Xavier Gourdon and Pascal Sebah's page of numbers, mathematical constants and algorithms
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite bookसाँचा:Dead link
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book