संचय (गणित)

testwiki से
imported>DreamRimmer bot III द्वारा परिवर्तित २३:१७, २३ जुलाई २०२४ का अवतरण (बॉट: आधार साँचा ठीक किया गया, सामान्य सफाई की गई।)
(अंतर) ← पुराना अवतरण | वर्तमान अवतरण (अंतर) | नया अवतरण → (अंतर)
नेविगेशन पर जाएँ खोज पर जाएँ
5 अलग-अलग वस्तुएं (जैसे अंक) दिये हों तो उनमें से 3 को लेकर बनने वाले संचयों की संख्या 10 होती है।

गणित में किसी समुच्चय (समूह) से कुछ वस्तुओं का चयन करने के तरीकों का अध्ययन एवं उनकी की संख्या संचय या कंबिनेशन कहलाती है। संचय में चयन की गयी वस्तुओं के क्रम का महत्व नहीं होता अथवा चयनित वस्तुओं के क्रमपरिवर्तन से बनी नयी 'चीज' कार्यात्मक रूप से बिल्कुल वही होती है जो क्रमपरिवर्तन के पहले थी। दूसरे शब्दों में, यदि कुछ वस्तुएं दी गई हैं तो उन वस्तुओ में से कुछ या सभी वस्तुओ को एक साथ लेकर बनाए जाने वाले विभिन्न समूहों को संचय कहते हैं।

छोटी संख्याओं से संबन्धित संचयों की संख्या की गिनती करना संभव है। उदाहरण के लिये तीन फल - आम, पपीता और केला दिये हो तो इनसे कोई दो फल चुनने के तीन तरीके हैं (आम और पपीता ; पपीता और केला ; आम और केला) किन्तु बड़ी संख्याओं के होने की स्थिति में निम्नलिखित सूत्र प्रयोग किया जाता है-

  • (1) यदि किसी समुच्चय में n अवयव हों तो उनमें से k-वस्तुओं के संचय बनाने की कुल विधियों की संख्या निम्नलिखित होगी-
n!(nk)!k!=n(n1)(n2)(nk+1)k!=(nnk)=(nk)

कुछ उपयोगी उदाहरण

नेटवर्क

१० बिन्दु दिये हैं। कोई भी बिन्दु किसी दूसरे से जोड़ा जाय तो कुल नेटवर्कों (रेखाओं) की संख्या ४५ होगी-

(102)=10!2!(102)!=10921=45

समिति का गठन

8 व्यक्तियों में से 3 को चुनकर समिति बनानी हो तो कुल सम्भावनाओं की संख्या 56 होगी-

(83)=8!3!(83)!=8!6!=56

इन्हें भी देखें

बाहरी कड़ियाँ

साँचा:आधार