भौतिकी के सूत्र

testwiki से
imported>InternetArchiveBot द्वारा परिवर्तित १०:४२, १५ जून २०२० का अवतरण (Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.1)
(अंतर) ← पुराना अवतरण | वर्तमान अवतरण (अंतर) | नया अवतरण → (अंतर)
नेविगेशन पर जाएँ खोज पर जाएँ

एसआई उपसर्ग (प्रीफिक्स)

साँचा:SI prefixes

आधारभूत यांत्रिकी (Fundamentals of Mechanics)

Foundational equations in translation and rotation.

Quantity Translation Rotation
समय t t
स्थिति x θ in radians
द्रव्यमान m m
समयान्तर Δt Δt
विस्थापन Δx Δθ
द्रव्यमान संरक्षण Δm=0 Δm=0
ऊर्जा संरक्षण ΔE=0 ΔE=0
संवेग संरक्षण ΔP=0 ΔL=0
वेग v=dx/dt ω=dθ/dt
त्वरण a=dv/dt α=dω/dt
झटका j=da/dt j=dα/dt
स्थितिज ऊर्जा परिवर्तन ΔU=W ΔU=W
संवेग P=mv L=Iω =||𝐫×𝐏||=m||𝐫×𝐯||
बल f=dP/dt=ma=dU/dx τ=dL/dt=Iα =||𝐫×𝐟||=m||𝐫×𝐚||
जड़त्व आघूर्ण m=dm=Σmi I=r2dm=Σr2mi
आवेग J=fdt J=τdt
कार्य W=fdx=𝐝𝐟 W=τdθ
शक्ति P=dW/dt=fv P=dW/dt=τω
गतिज ऊर्जा K=mv2/2=P2/2m K=I w2/2=ΣR2m
न्यूटन का तीसरा नियम fab=fba τab=τba

Every conservative force has a potential energy. By following two principles one can consistently assign a non-relative value to U:

  • Wherever the force is zero, its potential energy is defined to be zero as well.
  • Whenever the force does work, potential energy is lost.

स्थिर त्वरण (Constant acceleration)

Equations in translation and rotation, assuming constant acceleration.

भौतिक राशि रेखीय गति घुर्णन गति
विस्थापन Δv=at Δω=αt
समय Δ(v2)=2aΔx Δ(ω2)=2αΔθ
त्वरण Δx=tΔv/2 Δθ=tΔω/2
प्रा०वेग Δx=at2/2+v2t Δθ=αt2/2+ω2t
अंतिमवेग Δx=+at2/2+v1t Δθ=+αt2/2+ω1t

एकसमान वृत्तीय गति (Uniform circular motion)

uniform circular motion angular to linear displacement x=θr
uniform circular motion angular to linear speed v=θω
uniform circular motion angular to linear acceleration normal component ar=ω2r
uniform circular motion 𝐝=𝐢cosωt+𝐣sinωt
uniform circular motion tangential speed 𝐯=𝐝=ωr(𝐢sinωt𝐣cosωt)
uniform circular motion tangential component, scalar at=αr
uniform circular motion centripetal acceleration 𝐚=𝐝=ω2𝐝=v2𝐧/r
uniform circular motion centripetal acceleration scalar α=v2/r
uniform circular motion centripetal force f=mv2/r
uniform circular motion revolution time T=2πr/v

Elasticity

elastic force, lies parallel to spring f=kd
elastic potential energy U=kx2/2
elastic work, positive when relaxes W=kΔ(x2)/2

घर्षण (Friction)

normal force fn=𝐟𝐧
static friction maximum, lies tangent to the surface f=μsfn
kinetic friction, lies tangent to the surface f=μkfn
drag force, tangent to the path f=μdρav2/2
terminal velocity vt=2fg/(μdρA)
friction creates heat and sound ΔE=fkd

प्रतिबाधा एवं विकृत्ति (Stress and strain)

stress
strain
modulus of elasticity λ=stress/strain
yield strength
ultimate strength
Young's modulus F/A=EΔL/L
shear modulus F/A=GΔx/L
bulk modulus F/A=BΔV/V

अन्य

inertial frames xPA=xPB+xAB
. . . vPA=vPB+vAB
. . . aPA=aPB+0
trajectory y=xtanθgx2/2(V0cosθ)2
flight distance v02sin2θ/g
tension, lies within the cord ft=f
mechanical energy Emec=K+U
mechanical energy is conserved ΔEmec=0 when all forces are conservative
thrust t=Rvrel=ma
ideal rocket equation Δv=ln(mi/mf)vrel
parallel axis theorem I=Icom+mr2
list of moments of inertia
indeterminate systems

द्रब्यमान केन्द्र एवं संघट्ट (Center of mass and collisions)

center of mass COM 𝐫com=M1Σmi𝐫i
. . . xcom=M1xdm,
for constant density: xcom=V1xdV,
COM is in all planes of symmetry
elastic collision ΔEk=0
inelastic collision ΔEk=maximum
conservation of momentum in a two body collision 𝐏1i+𝐏2i=𝐏1f+𝐏2f
system COM remains inert 𝐯com=(𝐏1i+𝐏2i)(M1+M2)=const
elastic collision, 1D, M2 stationary v1f=(m1m2)(m1+m2)v1i
. . . v2f=(2m1)(m1+m2)v1i

चिकने तल पर लुढ़कना (Smooth rolling)

rolling distance xarc=Rθ
rolling distance ? xcom=Rα
rolling velocity vcom=Rω
rolling ? K=Icomω2/2+Mvcom2/2
rolling down a ramp along axis x acom,x=gsinθ1+Icom/MR2

उष्मागतिकी (Thermodynamics)

Zeroth Law of Thermodynamics (A=B)(B=C)A=C
(where "=" denotes systems in thermal equilibrium
First Law of Thermodynamics ΔEint=Q+W
Second Law of Thermodynamics ΔS0
Third Law of Thermodynamics S=Sstructural+CT
temperature T
molecules N
degrees of freedom f
heat Q, ΔE due to ΔT (energy)
thermal mass (extensive property) Cth=Q/ΔT
specific heat capacity (bulk property) cth=Q/ΔTm
enthalpy of vaporization Lv=Q/m
enthalpy of fusion Lf=Q/m
thermal conductivity κ
thermal resistance R=L/κ
thermal conduction rate P=Q/t=A(THTC)/R
thermal conduction rate through a composite slab P=Q/t=A(THTC)/Σ(Ri)
linear coefficient of thermal expansion dL/dt=αL
volume coefficient of thermal expansion dV/dt=3αV
Boltzmann constant k (energy)/(temperature)
Stefan-Boltzmann constant σ (power)/(area)(temp)^4
thermal radiation P=σϵATsys4
thermal absorption P=σϵATenv4
adiabatic ΔQ=0
ideal gas law PV=kTN
work, constant temperature W=kTNln(Vf/Vi)
work due to gas expansion W=ifpdV
. . . adiabatic ΔEint=W
. . . constant volume ΔEint=Q
. . . free expansion ΔEint=0
. . . closed cycle Q+W=0
work, constant volume W=0
work, constant pressure W=pΔV
translational energy Ek,avg=kTf/2
internal energy Eint=NkTf/2
mean speed vavg=(kT/m)(8/π)
mode speed vprb=(kT/m)2
root mean square speed vrms=(kT/m)3
mean free path λ=1/(2πd2N/V)?
Maxwell–Boltzmann distribution P(v)=4π(m/(2πkT))3/2V2e(mv2/(2kT))
molecular specific heat at a constant volume CV=Q/(NΔT)
? ΔEint=NCVΔT
molecular specific heat at a constant pressure Cp=Q/(NΔT)
? W=pΔV=NkΔT
? k=CpCV
adiabatic expansion pVγ=constant
adiabatic expansion TVγ1=constant
multiplicity of configurations W=N!/n1!n2!
microstate in one half of the box n1,n2
Boltzmann's entropy equation S=klnW
irreversibility
entropy S=kiPilnPi
entropy change ΔS=if(1/T)dQQ/Tavg
entropy change ΔS=kNln(Vf/Vi)+NCVln(Tf/Ti)
entropic force f=TdS/dx
engine efficiency ϵ=|W|/|QH|
Carnot engine efficiency ϵc=(|QH||QL|)/|QH|=(THTL)/TH
refrigeration performance K=|QL|/|W|
Carnot refrigeration performance KC=|QL|/(|QH||QL|)=TL/(THTL)

तरंग

torsion constant κ=τ/θ
phasor
node
antinode
period T
amplitude xm
decibel dB
frequency f=1/T=ω/(2π)
angular frequency ω=2πf=2π/T
phase angle ϕ
phase (ωt+ϕ)
damping force fd=bv
phase kyωt
wavenumber k
phase constant ϕ
linear density μ
harmonic number n
harmonic series f=v/λ=nv/(2L)
wavelength λ=k/(2π)
bulk modulus B=Δp/(ΔV/V)
path length difference ΔL
resonance ωd=ω
phase difference ϕ=2πΔL/λ
fully constructive interference ΔL/λ=n
fully destructive interference ΔL/λ=n+0.5
sound intensity I=P/A=ρvω2sm2/2
sound power source Ps
sound intensity over distance I=Ps/(4πr2)
sound intensity standard reference I0
sound level B=(10dB)log(I/I0)
pipe, two open ends f=v/λ=nv/(2L)
pipe, one open end f=v/λ=nv/(4L) for n odd
beats s(t)=[2smcosωt]cosωt
beat frequency fbeat=f1f2
Doppler effect f=f(v+vD)/(v+vS)
sonic boom angle sinθ=v/vs
average wave power Pavg=μvω2xm2/2
pressure amplitude Δpm=(vρω)xm
wave equation yx2=1v22yt2
wave superposition x(y,t)=x1(y,t)+x2(y,t)
wave speed v=ω/k=λ/T=λf
speed of sound v=B/ρ
wave speed on a stretched string v=ft/μ
angular frequency of an angular simple harmonic oscillator ω=I/κ
angular frequency of a low amplitude simple pendulum ω=L/g
angular frequency of a low amplitude physical pendulum ω=I/mgh
angular frequency of a linear simple harmonic oscillator ω=k/m
angular frequency of a linear damped harmonic oscillator ω=(k/m)(b2/4m2)
wave displacement x(t)=xmcos(ωt+ϕ)
wave displacement when damped x(t)=xmcos(ωt+ϕ)(ebt/2m)
wave velocity v(t)=xmsin(ωt+ϕ)(ω)
wave acceleration a(t)=xmcos(ωt+ϕ)(ω2)
transverse wave x(y,t)=xmsin(kyωt)
wave traveling backwards x(y,t)=xmsin(ky+ωt)
resultant wave x(y,t)=xmsin(kyωt+ϕ/2)(2cosϕ/2)
standing wave x(y,t)=cos(ωt)(2ysinky)
sound displacement function x(y,t)=xmcos(kyωt)
sound pressure-variation function Δp(y,t)=sin(kyωt)Δpm
potential harmonic energy EU(t)=kx2/2=kxm2cos2(ωt+ϕ)/2
kinetic harmonic energy EK(t)=kx2/2=kxm2sin2(ωt+ϕ)/2
total harmonic energy E(t)=kxm2/2=EU+EK
damped mechanical energy Emec(t)=kebt/mxm2/2

गुरुत्वाकर्षण (Gravitation)

gravitational constant G (force)(distance/mass)^2
gravitational force fG=Gm1m2/r2
superposition applies 𝐅=Σ𝐅i=d𝐅
gravitational acceleration ag=Gm/r2
free fall acceleration af=agω2R
shell theorem for gravitation
potential energy from gravity U=Gm1m2/rmagy
escape speed v=2Gm/r
Kepler's law 1 planets move in an ellipse, with the star at a focus
Kepler's law 2 A=0
Kepler's law 3 T2=(4π2/Gm)r3
orbital energy E=Gm1m2/a2
standard gravity ag=GmEarth/rEarth29.81m/s2
weight, points toward the center of gravity fg=fn=mg
path independence Wab,1=Wab,2=
Einstein field equations Rμν12gμνR+gμνΛ=8πGc4Tμν

तरलगतिकी (Fluid dynamics)

density ρ=Δm/ΔV
pressure p=ΔF/ΔA
pressure difference Δp=ρgΔy
pressure at depth p=p0+ρgh
barometer versus manometer
Pascal's principle
Archimedes' Principle
buoyant force Fb=mfg
gravitational force when floating Fg=Fb
apparent weight weightapp=weightFb
ideal fluid
equation of continuity RV=Av= constant
Bernoulli's equation p+ρv2/2+ρgy= constant

विद्युतचुम्बकत्व (Electromagnetism)

Lorentz force 𝐅=q(𝐄+𝐯×𝐁)
Gauss' law 𝐄d𝐀=ΦE=qenc/ϵ0
Gauss' law for magnetic fields 𝐁d𝐀=ΦB=0
Faraday's law of induction 𝐄d𝐬=dΦB/dt=
Ampere-maxwell law 𝐁d𝐬=μ0(ienc+id,enc)
elementary charge e
electric charge q=ne
conservation of charge Δq=0
linear charge density λ=q/l1
surface charge density σ=q/l2
volume charge density ρ=q/l3
electric constant ϵ0 (time)^2(charge)^2/(mass)(volume)
magnetic constant μ0 (force)(time)^2/(charge)^2
Coulomb's law F=q1q2/(4πϵ0)r2
electric field 𝐄=𝐅/q
electric field lines end at a negative charge
Gaussian surface 𝐀
flux notation implies a normal unit vector d𝐀𝐧d𝐀
electric flux ΦE=𝐄d𝐀
magnetic flux ΦB=𝐁d𝐀
magnetic flux given assumptions ΦB=BA
dielectric constant κ1
dielectric ϵ0ϵ0κ
Gauss' law with dialectric qenc=ϵ0κ𝐄d𝐀
Biot-Savart law 𝐁=μ04π (id𝐬)×𝐫r3,
Lenz's law induced current always opposes its cause
inductance (with respect to time) L=/q
inductance from coils L=NΦB/i
inductance of a solenoid L/l=μ0n2A
displacement current id=ϵ0dΦE/dt
displacement vector 𝐝
electric dipole moment 𝐩=q𝐝
electric dipole torque τ=𝐩×𝐄
electric dipole potential energy U=𝐩𝐄
magnetic dipole moment of a coil, magnitude only μ=iNA
magnetic dipole moment torque τ=μ×𝐁
magnetic dipole moment potential energy U=μ𝐁
electric field accelerating a charged mass a=qE/m
electric field of a charged point E=q/ϵ04πr2r^
electric field of a dipole moment E=p/ϵ02πz3
electric field of a charged line E=λ/ϵ02πr
electric field of a charged ring E=qz/ϵ04π(z2+R2)3/2
electric field of a charged conducting surface E=σ/ϵ0
electric field of a charged non-conducting surface E=σ/ϵ02
electric field of a charged disk E=σ(1z)/ϵ02z2+R2
electric field outside spherical shell r>=R E=q/ϵ04πr2
electric field inside spherical shell r<R E=0
electric field of uniform charge r<=R E=qr/ϵ04πR3
electric field energy density u=ϵ0E2/2
electric potential versus electric potential energy (energy)/(charge) versus (energy)
electric potential energy U=W
electric potential V=W/q=U/q
electric potential difference ΔV=W/q=ΔU/q
electric potential from electric field ΔV=if𝐄d𝐬
electric field from electric potential V=𝐄
electric potential of a charged point V=q/ϵ04πr
electric potential of a set of charged points V=ΣVi=(1/ϵ04π)Σqi/ri
electric potential of a dipole V=pcosθ/ϵ04πr2
electric potential of continuous charge V=dV=(1/ϵ04π)dq/r
electric potential energy of a pair of charged points Vq2=U=W=q1q2/ϵ04πr
capacitance C=q/V (charge)^2/(energy)
capacitance of parallel plates C=ϵ0A/d
capacitance of a cylinder C=ϵ02πL/ln(b/a)
capacitance of a sphere C=ϵ04πba/(ba)
capacitance of an isolated sphere C=ϵ04πR
capacitors in parallel Ceq+1=ΣCi+1
capacitors in series Ceq1=ΣCi1
capacitor potential energy U=q2/C2=CV2/2
current i=dq/dt
drift speed 𝐯d
current density 𝐉=ne𝐯d/m3
current density magnitude J=i/A
current density to get current i=JdA
resistance R=V/i
resistivity ρ=𝐄/𝐉
resistivity temperature coefficient α
resistivity across temperature ρρ0=ρ0α(TT0)
resistivity and resistance RA=ρL
electrical conductivity σ=1/ρ=𝐉/𝐄
resistor power dissipation P=i2R=V2/R
internal resistance i=/(R+r)
resistors in series Req+1=ΣRi+1
resistors in parallel Req1=ΣRi1
Kirchoff's current law iin=iout
Ohm's law V=iR
emf =dW/dq=iR
emf rules loop, resistance, emf
electrical power P=iV
emf power Pemf=i
electric potential difference across a real battery p=iR
magnetic field force on a moving charge 𝐅B=q𝐯×𝐁
magnetic field force on a current 𝐅B=i𝐋×𝐁
Hall effect n=Bi/Vle
circulating charged particle |q|vB=mv2/r
cyclotron resonance condition f=fosc
magnetic field of a line B=μ0i/2πR
magnetic field of a ray B=μ0i/4πR
magnetic field at the center of a circular arc B=μ0iϕ/4πR
magnetic field of a solenoid B=μ0in
magnetic field of a toroid B=μ0iN/2πr
magnetic field of a current carrying coil 𝐁=μ0μ/2πz3
self induction of emf L=Ldi/dt
magnetic energy UB=Li2/2
magnetic energy density uB=B2/2μ0
mutual induction 1=Mdi2/dt,2=Mdi1/dt
transformation of voltage VsNp=VpNs
transformation of current IsNs=IpNp
transformation of reistance Req=(Np/Ns)2R
induced magnetic field inside a circular capacitor B=(μ0id/2πR2)r
induced magnetic field outside a circular capacitor B=μ0id/2πrr
RC circuit ODE with respect to time Rq+C1q=
RC circuit capacitive time constant τ=RC
RC circuit charging a capacitor q=C(1et/RC)
RL circuit ODE with respect to time Li+Ri=
RL circuit time constant τL=L/R
RL circuit rise of current i=/R(1et/τL)
RL circuit decay of current i=et/τL/R=i0et/τL
LC circuit ODE with respect to time Lq+C1q=
LC circuit ω=1/LC
LC circuit charge q=Qcos(ωt+ϕ)
LC circuit current i=ωQsin(ωt+ϕ)
LC circuit electrical potential energy UE=q2/2C=Q2cos2(ωt+ϕ)/2C
LC circuit magnetic potential energy UB=Q2sin2(ωt+ϕ)/2C
RLC circuit ODE with respect to time Lq+Rq+C1q=
RLC circuit charge q=QeTRt/2Lcos(ωt+ϕ)
resistive load VR=IRR
capacitive load VC=ICXC
inductive load VL=ILXL
resistive reactance XR=?
capacitive reactance XC=1/ωdC
inductive reactance XL=ωdL
phase constant tanϕ=XLXC/R
electromagnetic resonance ωd=ω=1/LC
AC current Irms=I/2
AC voltage Vrms=V/2
AC emf rms=m/2
AC power Pavg=Irmscosϕ

प्रकाश (Light)

electric light component E=Emsin(kxωt)
magnetic light component B=Bmsin(kxωt)
speed of light c=1/μ0ϵ0=E/B
Poynting vector 𝐒=μ01𝐄×𝐁
Poynting vector magnitude S=EB/μ0=E2/cμ0
rms electric field of light Erms=E/2
light intensity I=Erms2/cμ0
light intensity at the sphere I=Ps/4πr2
radiation momentum with total absorption (inelastic) Δp=ΔU/c
radiation momentum with total reflection (elastic) Δp=2ΔU/c
radiation pressure with total absorption (inelastic) pr=I/c
radiation pressure with total reflection (elastic) pr=2I/c
intensity from polarizing unpolarized light I=I0/2
intensity from polarizing polarized light I=I0cos2θ
index of refraction of substance f nf=c/vf
angle of reflection θ1=θ2
angle of refraction n1sinθ1=n2sinθ2
angle of total reflection θc=sin1n2/n1
angle of total polarisation θB=tan1n2/n1
image distance in a plane mirror di=do
image distance in a spherical mirror n1/do+n2/di=(n2n1)/r
spherical mirror focal length f=r/2
spherical mirror 1/do+1/di=1/f
lateral magnification m and h negative when upside down m=hi/ho=di/do
lens focal length 1/f=1/do+1/di
lens focal length from refraction indexes 1/f=(nlens/nmed1)(1/r11/r2)
path length difference ΔL=dsinθ
double slit minima dsinθ=(N+1/2)λ
double slit maxima dsinθ=Nλ
double-slit interference intensity I=4I0cos2(πdsinθ/λ)
thin film in air minima (N+0/2)λ/n2
thin film in air maxima 2L=(N+1/2)λ/n2
single-slit minima asinθ=Nλ
single-slit intensity I(θ)=I0(sinα/α)2
double slit intensity I(θ)=I0(cos2B)(sinα/α)2
. . . α=πasinθ/λ
circular aperture first minimum sinθ=1.22λ/d
Rayleigh's criterion θR=1.22λ/d
diffraction grating maxima lines dsinθ=Nλ
diffraction grating half-width Δθhw=λ/Ndcosθ
diffraction grating dispersion D=N/dcosθ
diffraction grating resolving power R=Nn
diffraction grating lattice distance d=Nλ/2sinθ
Lorentz factor γ=1/1(v/c)2
Lorentz transformation t=γ(txv/c2)
. . . x=γ(xvt)
. . . y=y
. . . z=z
time dilation Δt=γΔt0
length contraction L=L0/γ
relativistic Doppler effect f=f01(v/c)/1+(v/c)
Doppler shift v=|Δλ|c/λ0
momentum 𝐩=γm𝐯
rest energy E0=mc2
total energy E=E0+K=mc2+K=γmc2=(pc)2+(mc2)2
Energy Removed Q=Δmc2
kinetic energy K=Emc2=γmc2mc2=mc2(γ1)

कण भौतिकी (Particle Physics)

standard model see 4x4 chart of particles
Planck's constant h, in energy/frequency
Reduced Planck's constant =h/2π, in energy/frequency
Planck–Einstein equation E=hf
threshold frequency f0
work function Φ=hf0
photoelectric kinetic energy Kmax=hfΦ
photon momentum p=hf/c=h/λ
de Broglie wavelength λ=h/p
Schrodinger's equation itΨ(𝐫,t)=H^Ψ(𝐫,t)
Schrodinger's equation one dimensional motion d2ψ/dx2+8π2m[EU(x)]ψ/h2=0
Schrodinger's equation free particle d2ψ/dx2+k2ψ=0
Heisenberg's uncertainty principle ΔxΔpx
infinite potential well En=(hn/2L)2/2m
wavefunction of a trapped electron ψn(x)=Asin(nπx/L), for positive int n
wavefunction probability density p(x)=ψn2(x)dx
normalization ψn2(x)dx=1
hydrogen atom orbital energy En=me4/8ϵ02h2n2=13.61eV/n2, for positive int n
hydrogen atom spectrum 1/λ=R(1/nlow21/nhigh2)
hydrogen atom radial probability density P(r)=4r2/a3e2r/a
spin projection quantum number ms{1/2,+1/2}
orbital magnetic dipole moment μorb=e𝐋/2m
orbital magnetic dipole moment components μorb,z=mμB
spin magnetic dipole moment μ𝐬=e𝐒/m=gq𝐒/2m
orbital magnetic dipole moment μorb=e𝐋orb/2m
spin magnetic dipole moment potential U=μs𝐁ext=μs,zBext
orbital magnetic dipole moment potential U=μorb𝐁ext=μorb,zBext
Bohr magneton μB=e/2m
angular momentum components Lz=m
spin angular momentum magnitude S=s(s+1)
cutoff wavelength λmin=hc/K0
density of states N(E)=82πm3/2E1/2/h3
occupancy probability P(E)=1/(e(EEF)/kT+1)
Fermi energy EF=(3/162π)2/3h2n2/3m
mass number A=Z+N
nuclear radius r=r0A1/3,r01.2fm
mass excess Δ=MA
radioactive decay N=N0eλt
Hubble constant H=71.0km/s
Hubble's law v=Hr
conservation of lepton number
conservation of baryon number
conservation of strangeness
eightfold way
weak force
strong force QCD=ψ¯i(iγμ(Dμ)ijmδij)ψj14GμνaGaμν=ψ¯i(iγμμm)ψigGμaψ¯iγμTijaψj14GμνaGaμν
Noether's theorem
Electroweak interaction :EW=g+f+h+y.
g=14WaμνWμνa14BμνBμν
f=QiiD/Qi+uiciD/uic+diciD/dic+LiiD/Li+eiciD/eic
h=|Dμh|2λ(|h|2v22)2
y=yuijϵabhbQiaujcydijhQidjcyeijhLiejc+h.c.
Quantum electrodynamics :=ψ¯(iγμDμm)ψ14FμνFμν,

क्वांटम यांत्रिकी (Quantum Mechanics)

Postulate 1: State of a system A system is completely specified at any one time by a Hilbert space vector.
Postulate 2: Observables of a system A measurable quantity corresponds to an operator with eigenvectors spanning the space.
Postulate 3: Observation of a system Measuring a system applies the observable's operator to the system and the system collapses into the observed eigenvector.
Postulate 4: Probabilistic result of measurement The probability of observing an eigenvector is derived from the square of its wavefunction.
Postulate 5: Time evolution of a system The way the wavefunction evolves over time is determined by Shrodinger's equation.

इन्हें भी देखें

भौतिकी में प्रायः प्रयुक्त चर

सन्दर्भ

साँचा:Reflist

बाहरी कड़ियाँ