त्रिकोणमितीय सर्वसमिकाओं की उपपत्तियाँ

testwiki से
imported>हिन्दू1 द्वारा परिवर्तित २०:०९, १७ सितम्बर २०२१ का अवतरण (157.42.100.240 (वार्ता) द्वारा किए बदलाव 5296291 को पूर्ववत किया)
(अंतर) ← पुराना अवतरण | वर्तमान अवतरण (अंतर) | नया अवतरण → (अंतर)
नेविगेशन पर जाएँ खोज पर जाएँ

इस लेख में प्रमुख त्रिकोणमितीय सर्वसमिकाओं की उपपतियां (सिद्धि) दी गयीं हैं।

आरम्भिक त्रिकोणमितीय सर्वसमिकाएँ

साँचा:अनुवाद

परिभाषाएँ

Trigonometric functions specify the relationships between side lengths and interior angles of a right triangle. For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse.

Referring to the diagram at the right, the six trigonometric functions of θ are:

sinθ=oppositehypotenuse=ah
cosθ=adjacenthypotenuse=bh
tanθ=oppositeadjacent=ab
cotθ=adjacentopposite=ba
secθ=hypotenuseadjacent=hb
cscθ=hypotenuseopposite=ha

अनुपात वाली सर्वसमिकाएँ

The following identities are trivial algebraic consequences of these definitions and the division identity.
They rely on multiplying or dividing the numerator and denominator of fractions by a variable. Ie,

ab=(ac)(bc)
tanθ=oppositeadjacent=(oppositehypotenuse)(adjacenthypotenuse)=sinθcosθ
cotθ=adjacentopposite=(adjacentadjacent)(oppositeadjacent)=1tanθ=cosθsinθ
secθ=1cosθ=hypotenuseadjacent
cscθ=1sinθ=hypotenuseopposite
tanθ=oppositeadjacent=(opposite×hypotenuseopposite×adjacent)(adjacent×hypotenuseopposite×adjacent)=(hypotenuseadjacent)(hypotenuseopposite)=secθcscθ

Or

tanθ=sinθcosθ=(1cscθ)(1secθ)=(cscθsecθcscθ)(cscθsecθsecθ)=secθcscθ
cotθ=cscθsecθ

पूरक कोणों से सम्बन्धित सर्वसमिकाएँ

Two angles whose sum is π/2 radians (90 degrees) are complementary. In the diagram, the angles at vertices A and B are complementary, so we can exchange a and b, and change θ to π/2 − θ, obtaining:

sin(π/2θ)=cosθ
cos(π/2θ)=sinθ
tan(π/2θ)=cotθ
cot(π/2θ)=tanθ
sec(π/2θ)=secθ
csc(π/2θ)=cscθ

पाइथागोरीय सर्वसमिकाएँ

Identity 1:

sin2(x)+cos2(x)=1

Proof 1:

Refer to the triangle diagram above. Note that a2+b2=h2 by Pythagorean theorem.

sin2(x)+cos2(x)=a2h2+b2h2=a2+b2h2=h2h2=1.

The following two results follow from this and the ratio identities. To obtain the first, divide both sides of sin2(x)+cos2(x)=1 by cos2(x); for the second, divide by sin2(x).

tan2(x)+1 =sec2(x)
sec2(x)tan2(x)=1 

Similarly

1 +cot2(x)=csc2(x)
csc2(x)cot2(x)=1 

Proof 2:

Differentiating the left-hand side of the identity yields:

2sinxcosx2sinxcosx=0

Integrating this shows that the original identity is equal to a constant, and this constant can be found by plugging in any arbitrary value of x.

Identity 2:

The following accounts for all three reciprocal functions.

csc2(x)+sec2(x)cot2(x)=2 +tan2(x)

Proof 1:

Refer to the triangle diagram above. Note that a2+b2=h2 by Pythagorean theorem.

csc2(x)+sec2(x)=h2a2+h2b2=a2+b2a2+a2+b2b2=2 +b2a2+a2b2

Substituting with appropriate functions -

2 +b2a2+a2b2=2 +tan2(x)+cot2(x)

Rearranging gives:

csc2(x)+sec2(x)cot2(x)=2 +tan2(x)

कोणों के योग के त्रिकोणमितीय फलन

ज्या (Sine)

साँचा:अनुवाद

Illustration of the sum formula.

Draw a horizontal line (the x-axis); mark an origin O. Draw a line from O at an angle α above the horizontal line and a second line at an angle β above that; the angle between the second line and the x-axis is α+β.

Place P on the line defined by α+β at a unit distance from the origin.

Let PQ be a line perpendicular to line defined by angle α, drawn from point Q on this line to point P. OQP is a right angle.

Let QA be a perpendicular from point A on the x-axis to Q and PB be a perpendicular from point B on the x-axis to P. OAQ and OBP are right angles.

Draw QR parallel to the x-axis.

Now angle RPQ=α (because OQA=90α, making RQO=α,RQP=90α, and finally RPQ=α)

RPQ=π2RQP=π2(π2RQO)=RQO=α
OP=1
PQ=sinβ
OQ=cosβ
AQOQ=sinα, so AQ=sinαcosβ
PRPQ=cosα, so PR=cosαsinβ
sin(α+β)=PB=RB+PR=AQ+PR=sinαcosβ+cosαsinβ

By substituting β for β and using Symmetry, we also get:

sin(αβ)=sinαcosβ+cosαsinβ
sin(αβ)=sinαcosβcosαsinβ

Another simple "proof" can be given using Euler's formula known from complex analysis: Euler's formula is:

eiφ=cosφ+isinφ

Although it is more precise to say that Euler's formula entails the trigonometric identities, it follows that for angles α and β we have:

ei(α+β)=cos(α+β)+isin(α+β)

Also using the following properties of exponential functions:

ei(α+β)=eiαeiβ=(cosα+isinα)(cosβ+isinβ)

Evaluating the product:

ei(α+β)=(cosαcosβsinαsinβ)+i(sinαcosβ+sinβcosα)

Equating real and imaginary parts:

cos(α+β)=cosαcosβsinαsinβ
sin(α+β)=sinαcosβ+sinβcosα

कोज्या (Cosine)

साँचा:अनुवाद Using the figure above,

OP=1
PQ=sinβ
OQ=cosβ
OAOQ=cosα, so OA=cosαcosβ
RQPQ=sinα, so RQ=sinαsinβ
cos(α+β)=OB=OABA=OARQ=cosαcosβ sinαsinβ

By substituting β for β and using Symmetry, we also get:

cos(αβ)=cosαcosβ sinαsinβ
cos(αβ)=cosαcosβ+sinαsinβ

Also, using the complementary angle formulae,

cos(α+β)=sin(π/2(α+β))=sin((π/2α)β)=sin(π/2α)cosβcos(π/2α)sinβ=cosαcosβsinαsinβ

स्पर्शज्या (Tangent) तथा कोस्पर्शज्या (cotangent)

साँचा:अनुवाद From the sine and cosine formulae, we get

tan(α+β)=sin(α+β)cos(α+β)=sinαcosβ+cosαsinβcosαcosβsinαsinβ

Dividing both numerator and denominator by cosαcosβ, we get

tan(α+β)=tanα+tanβ1tanαtanβ

Subtracting β from α, using tan(β)=tanβ,

tan(αβ)=tanα+tan(β)1tanαtan(β)=tanαtanβ1+tanαtanβ

Similarly from the sine and cosine formulae, we get

cot(α+β)=cos(α+β)sin(α+β)=cosαcosβsinαsinβsinαcosβ+cosαsinβ

Then by dividing both numerator and denominator by sinαsinβ, we get

cot(α+β)=cotαcotβ1cotα+cotβ

Or, using cotθ=1tanθ,

cot(α+β)=1tanαtanβtanα+tanβ=1tanαtanβ11tanα+1tanβ=cotαcotβ1cotα+cotβ

Using cot(β)=cotβ,

cot(αβ)=cotαcot(β)1cotα+cot(β)=cotαcotβ+1cotβcotα

दोगुने कोणों की सर्वसमिकाएँ

साँचा:अनुवाद From the angle sum identities, we get

sin(2θ)=2sinθcosθ

and

cos(2θ)=cos2θsin2θ

The Pythagorean identities give the two alternative forms for the latter of these:

cos(2θ)=2cos2θ1
cos(2θ)=12sin2θ

The angle sum identities also give

tan(2θ)=2tanθ1tan2θ=2cotθtanθ
cot(2θ)=cot2θ12cotθ=cotθtanθ2

It can also be proved using Euler's formula

eiφ=cosφ+isinφ

Squaring both sides yields

ei2φ=(cosφ+isinφ)2

But replacing the angle with its doubled version, which achieves the same result in the left side of the equation, yields

ei2φ=cos2φ+isin2φ

It follows that

(cosφ+isinφ)2=cos2φ+isin2φ.

Expanding the square and simplifying on the left hand side of the equation gives

i(2sinφcosφ)+cos2φsin2φ =cos2φ+isin2φ.

Because the imaginary and real parts have to be the same, we are left with the original identities

cos2φsin2φ =cos2φ,

and also

2sinφcosφ=sin2φ.

अर्ध कोणों की सर्वसमिकाएँ

साँचा:अनुवाद The two identities giving the alternative forms for cos 2θ lead to the following equations:

cosθ2=±1+cosθ2,
sinθ2=±1cosθ2.

The sign of the square root needs to be chosen properly—note that if π is added to θ, the quantities inside the square roots are unchanged, but the left-hand-sides of the equations change sign. Therefore the correct sign to use depends on the value of θ.

For the tan function, the equation is:

tanθ2=±1cosθ1+cosθ.

Then multiplying the numerator and denominator inside the square root by (1 + cos θ) and using Pythagorean identities leads to:

tanθ2=sinθ1+cosθ.

Also, if the numerator and denominator are both multiplied by (1 - cos θ), the result is:

tanθ2=1cosθsinθ.

This also gives:

tanθ2=cscθcotθ.

Similar manipulations for the cot function give:

cotθ2=±1+cosθ1cosθ=1+cosθsinθ=sinθ1cosθ=cscθ+cotθ.

विविध

If ψ, θ and ϕ are the angles of a triangle, i.e. ψ+θ+ϕ=π= half circle,

tan(ψ)+tan(θ)+tan(ϕ)=tan(ψ)tan(θ)tan(ϕ).

Proof:[]

ψ=πθϕtan(ψ)=tan(πθϕ)=tan(θ+ϕ)=tanθtanϕ1tanθtanϕ=tanθ+tanϕtanθtanϕ1(tanθtanϕ1)tanψ=tanθ+tanϕtanψtanθtanϕtanψ=tanθ+tanϕtanψtanθtanϕ=tanψ+tanθ+tanϕ

Miscellaneous -- the triple cotangent identity

If ψ+θ+ϕ=π2= quarter circle,

cot(ψ)+cot(θ)+cot(ϕ)=cot(ψ)cot(θ)cot(ϕ).

Proof:

Replace each of ψ, θ, and ϕ with their complementary angles, so cotangents turn into tangents and vice-versa.

Given

ψ+θ+ϕ=π2
(π2ψ)+(π2θ)+(π2ϕ)=3π2(ψ+θ+ϕ)=3π2π2=π

so the result follows from the triple tangent identity.

Prosthaphaeresis identities

  • sinθ±sinϕ=2sin(θ±ϕ2)cos(θϕ2)
  • cosθ+cosϕ=2cos(θ+ϕ2)cos(θϕ2)
  • cosθcosϕ=2sin(θ+ϕ2)sin(θϕ2)

ज्या सर्वसमिकाओं की उपपत्ति

First, start with the sum-angle identities:

sin(α+β)=sinαcosβ+cosαsinβ
sin(αβ)=sinαcosβcosαsinβ

By adding these together,

sin(α+β)+sin(αβ)=sinαcosβ+cosαsinβ+sinαcosβcosαsinβ=2sinαcosβ

Similarly, by subtracting the two sum-angle identities,

sin(α+β)sin(αβ)=sinαcosβ+cosαsinβsinαcosβ+cosαsinβ=2cosαsinβ

Let α+β=θ and αβ=ϕ,

α=θ+ϕ2 and β=θϕ2

Substitute θ and ϕ

sinθ+sinϕ=2sin(θ+ϕ2)cos(θϕ2)
sinθsinϕ=2cos(θ+ϕ2)sin(θϕ2)=2sin(θϕ2)cos(θ+ϕ2)

Therefore,

sinθ±sinϕ=2sin(θ±ϕ2)cos(θϕ2)

कोज्या सर्वसमिकाओं की उपपत्ति

Similarly for cosine, start with the sum-angle identities:

cos(α+β)=cosαcosβ sinαsinβ
cos(αβ)=cosαcosβ+sinαsinβ

Again, by adding and substracting

cos(α+β)+cos(αβ)=cosαcosβ sinαsinβ+cosαcosβ+sinαsinβ=2cosαcosβ 
cos(α+β)cos(αβ)=cosαcosβ sinαsinβcosαcosβsinαsinβ=2sinαsinβ

Substitute θ and ϕ as before,

cosθ+cosϕ=2cos(θ+ϕ2)cos(θϕ2)
cosθcosϕ=2sin(θ+ϕ2)sin(θϕ2)

असमिकाएँ

Illustration of the sine and tangent inequalities.

The figure at the right shows a sector of a circle with radius 1. The sector is θ/(2π) of the whole circle, so its area is θ/2.

OA=OD=1
AB=sinθ
CD=tanθ

The area of triangle OAD is AB/2, or sinθ/2. The area of triangle OCD is CD/2, or tanθ/2.

Since triangle OAD lies completely inside the sector, which in turn lies completely inside triangle OCD, we have

sinθ<θ<tanθ

This geometric argument applies if 0<θ<π/2. It relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property.[] For the sine function, we can handle other values. If θ>π/2, then θ>1. But sinθ≤1 (because of the Pythagorean identity), so sinθ<θ. So we have

sinθθ<1   if   0<θ

For negative values of θ we have, by symmetry of the sine function

sinθθ=sin(θ)θ<1

Hence

sinθθ<1   if   θ0
tanθθ>1   if   0<θ<π2

कैलकुलस की सर्वसमिकाएँ

प्रारम्भिक

limθ0sinθ=0
limθ0cosθ=1

Sine and angle ratio identity

limθ0sinθθ=1

Proof: From the previous inequalities, we have, for small angles

sinθ<θ<tanθ,

Therefore,

sinθθ<1<tanθθ,

Consider the right-hand inequality. Since

tanθ=sinθcosθ
1<sinθθcosθ

Multply through by cosθ

cosθ<sinθθ

Combining with the left-hand inequality:

cosθ<sinθθ<1

Taking cosθ to the limit as θ0

limθ0cosθ=1

Therefore,

limθ0sinθθ=1

Cosine and angle ratio identity

limθ01cosθθ=0

Proof:

1cosθθ=1cos2θθ(1+cosθ)=sin2θθ(1+cosθ)=(sinθθ)×sinθ×(11+cosθ)

The limits of those three quantities are 1, 0, and 1/2, so the resultant limit is zero.

Cosine and square of angle ratio identity

limθ01cosθθ2=12

Proof:

As in the preceding proof,

1cosθθ2=sinθθ×sinθθ×11+cosθ.

The limits of those three quantities are 1, 1, and 1/2, so the resultant limit is 1/2.

Proof of Compositions of trig and inverse trig functions

All these functions follow from the Pythagorean trigonometric identity. We can prove for instance the function

sin[arctan(x)]=x1+x2

Proof:

We start from

sin2θ+cos2θ=1

Then we divide this equation by cos2θ

cos2θ=1tan2θ+1

Then use the substitution θ=arctan(x), also use the Pythagorean trigonometric identity:

1sin2[arctan(x)]=1tan2[arctan(x)]+1

Then we use the identity tan[arctan(x)]x

sin[arctan(x)]=xx2+1

इन्हें भी देखें

सन्दर्भ

  • E. T. Whittaker and G. N. Watson. A course of modern analysis, Cambridge University Press, 1952