डीरिख्ले श्रेणी

testwiki से
imported>InternetArchiveBot द्वारा परिवर्तित ००:१०, १५ जून २०२० का अवतरण (Rescuing 2 sources and tagging 0 as dead.) #IABot (v2.0.1)
(अंतर) ← पुराना अवतरण | वर्तमान अवतरण (अंतर) | नया अवतरण → (अंतर)
नेविगेशन पर जाएँ खोज पर जाएँ
Dirikle function

गणित में डीरिख्ले श्रेणी निम्न प्रकार की श्रेणी को कहा जाता है:

n=1anns,

जहाँ s सम्मिश्र और a सम्मिश्र अनुक्रम है। यह सामान्य डीरिख्ले श्रेणी की विशेष अवस्था है।

डीरिख्ले श्रेणी विश्लेषी संख्या सिद्धान्त में विभिन्न प्रकार से महत्त्वपूर्ण भूमिका निभाती है। रीमान जीटा फलन की सबसे प्रचलित परिभाषा डीरिख्ले एल-फलन के रूप में डीरिख्ले श्रेणी है। श्रेणी का नामकरण पीटर गुस्ताफ लजन डीरिक्ले के सम्मान में रखा गया।

सांयोगिक महत्त्व

डीरिख्ले श्रेणी को कार्तिय गुणन के दौरान संयुक्त रूप से गुणात्मकतः संयुग्मी भार से वस्तुओं के गणित्र भारित समुच्चयों के लिए जनित श्रेणी के रूप में उपयोग किया जा सकता है।

माना कि A एक समुच्चय है जिसमें फलन w: AN समुच्चय A के सभी अवयवों का भार निर्दिष्ट करता है और इसके साथ ही माना कि भार के अन्तर्गत किसी भी प्राकृत संख्या पर तंतु एक परिमित समुच्चय है। (हम इस तरह की परिपाटी को (A,w) भारित समुच्चय कहते हैं।) इसके अतिरिक्त माना कि an भार n के साथ समुच्चय A के अवयवों की संख्या है। इसके बाद हम w के सापेक्ष A के लिए सामान्य डीरिख्ले जनित श्रेणी निम्न प्रकार परिभाषित करते हैं:

𝔇wA(s)=aA1w(a)s=n=1anns

ध्यान दें कि यदि A और B किसी भारित समुच्चय (U, w) के असंयुक्त उपसमुच्चय हैं तो उनके (असंयुक्त) संघ के लिए डीरिख्ले श्रेणी उनकी डीरिख्ले श्रेणी के योग के बराबर होगी:

𝔇wAB(s)=𝔇wA(s)+𝔇wB(s).

इसके अतिरिक्त, यदि (A, u) और (B, v) दो भारित समुच्चय हैं और हम एक भार फलन w: A × BN, A के सभी अवयवों a और B के सभी अवयवों b पर निम्न प्रकार परिभाषित करते हैं:

w(a,b)=u(a)v(b),

तब हम कार्तिय गुणन की डीरिख्ले श्रेणी के लिए वियोजन निम्नलिखित है

𝔇wA×B(s)=𝔇uA(s)𝔇vB(s).

जो अन्ततः समान्य तथ्य nsms=(nm)s. का अनुसरण करता है।

सन्दर्भ

साँचा:टिप्पणीसूची