डिजक्स्ट्रा का अल्गोरिद्म

testwiki से
imported>DreamRimmer bot III द्वारा परिवर्तित १९:५९, २२ जुलाई २०२४ का अवतरण (बॉट: आधार साँचा ठीक किया गया, सामान्य सफाई की गई।)
(अंतर) ← पुराना अवतरण | वर्तमान अवतरण (अंतर) | नया अवतरण → (अंतर)
नेविगेशन पर जाएँ खोज पर जाएँ

साँचा:Infoboxडिजक्स्ट्रा का एल्गोरिथ्म किसी नक्शे के दो स्थानों के बीच सबसे छोटा रास्ता ढूंढने के लिए एक एल्गोरिथ्म है।[] यह एल्गोरिथ्म कंप्यूटर साइंटिस्ट एस्गर डब्ल्यू॰ डिजक्स्ट्रा के द्वारा 1956 में प्रकाशित की गई थी।[] एल्गोरिथ्म कई प्रकार में आती है एक प्रकार के अंदर अगर हम स्त्रोत को फिक्स कर दें तो यह हमें स्त्रोत से लेकर सभी स्थानों के बीच में सबसे छोटा रास्ता ढूंढने में मदद करता है। इस एल्गोरिथ्म को संशोधित करके हम एक। स्थान से दूसरे स्थान के बीच में भी छोटा रास्ता ढूंढ सकते हैं। डिजक्स्ट्रा एल्गोरिथ्म को बहुत जगह में यूज किया जाता है जैसे कि एक शहर से दूसरे शहर के बीच में छोटा रास्ता ढूंढने में। इंटरनेट में रूटिंग प्रोटोकोल में छोटा रास्ता ढूंढने में भी डिजक्स्ट्रा का उपयोग किया जाता है।[]

यह एल्गोरिथ्म मूल रूप से विभिन्न रचनाओं का उपयोग करता है। डिजक्स्ट्रा की मूल एल्गोरिथ्म दिये गये दो नोड के मध्य लघुतम पथ ज्ञात करने के लिए किया जाता है।

स्यूडोकोड[]

हम सबसे पहले एक सेट create vertex set Q बनाएंगे जिसके अंदर हमारे सारे वर्टेक्स होंगे। उसके बाद हम अपना डिस्टेंस मैट्रिक्स dist[v] लेंगे जिसके अंदर हम सबसे छोटी दूरी को रखेंगे। डिस्टेंस मैट्रिक्स के अंदर हमने अभी सभी की वैल्यू को इंफिनिटी रख दिया है। यह पंक्तिमें u ← vertex in Q with min dist[u] सबसे छोटी दूरी निकाल कर देगा। हम स्त्रोत से दूरी को चेक करेंगे अगर यह छोटी है तो हम अपने डिस्टेंस मैट्रिक्स के अंदर इसको अपडेट alt ← dist[u] + length(u, v) कर देंगे। यह प्रक्रिया तब तक चलती रहेगी जब तक हीप खाली ना हो जाए।

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

अगर हम सबसे छोटी दूरी स्त्रोत से लक्ष्य तक जानना चाहते हैं तो इस शुरु कोड को हम ऐसे अपडेट कर सकते हैं।

1  S ← empty sequence
2  utarget
3  if prev[u] is defined or u = source:          
4      while u is defined:                      
5          insert u at the beginning of S        
6          u ← prev[u]                           

सन्दर्भ

साँचा:Reflist

साँचा:कम्प्यूटर विज्ञान आधार