त्रिभुज के अन्तर्वृत्त और बहिर्वृत्त

testwiki से
imported>Mtarch11 द्वारा परिवर्तित ०५:२५, १४ दिसम्बर २०२० का अवतरण (2409:4064:2E85:4C17:7CDA:9A23:ED0:8FE8 (वार्ता) द्वारा किए बदलाव को अनुनाद सिंह के बदलाव से पूर्ववत किया: बर्बरता हटाई।)
(अंतर) ← पुराना अवतरण | वर्तमान अवतरण (अंतर) | नया अवतरण → (अंतर)
नेविगेशन पर जाएँ खोज पर जाएँ
किसी त्रिभुज (काले रंग में) का अंतर्वृत्त (नीला) , अन्तःकेन्द्र (I), बहिर्वृत्त (नारंगी), बहिर्केन्द्र (JA, JB, JC), अन्तःकोणों के समद्विभाजक (लाल) तथा बहिर्कोणों के समद्विभाजक (हरे)

ज्यामिति में, किसी त्रिभुज का अन्तर्वृत्त (या, अन्तःवृत्त / incircle) वह बड़ा से बड़ा वृत्त है जो उस त्रिभुज के अन्दर बनाया जा सकता है। वस्तुतः, अन्तःवृत्त तीनों भुजाओं को स्पर्श करता है। इसका केन्द्र 'अन्तःकेन्द्र' (incenter) कहलाता है। []

किसी त्रिभुज के तीन बहिर्वृत्त (excircle या escribed circle) होते हैं।[] ये तीनों वृत्त उस त्रिभुज के बाहर होते हैं। इनमें से प्रत्येक वृत्त, त्रिभुज की किसी एक भुजा को तथा शेष दो भुजाओं को आगे बढाने से बनी दो रेखाओं को स्पर्श करता है।[]

किसी त्रिभुज के तीनों शीर्षों से होकर जाने वाले वृत्त को उस त्रिभुज का परिवृत्त (Circumcircle) कहते हैं।

इस त्रिभुज की अन्तःत्रिज्या r हो तो
साँचा:Math

माना त्रिभुज ABC के तीन कोण A, B, C हैं और इन कोणों के सामने की भुजाएँ क्रमशः a, b, c हैं। त्रिभुज का क्षेत्रफल S है; अन्तःत्रिज्या r है और तीन बहिर्वृत्तों की त्रिज्याएँ क्रमशः ra, rb, rc हैं। इस त्रिभुज की अर्धपरिधि p=a+b+c2 है। तो


r=2Sa+b+c=Sp


=(pa)tanA2


=(pb)tanB2=(pc)tanC2


=(pa)(pb)(pc)p


ra=2Sb+ca=Spa=p.tanA2


rb=2Sc+ab=Spb=p.tanB2


rc=2Sa+bc=Spc=p.tanC2


इसके अतिरिक्त,

  • S=rrarbrc
  • 1r=1ra+1rb+1rc


अन्तर्वृत्त

त्रिभुज का अन्तःवृत्त तीनों भुजाओं को स्पर्श करता है, अतः अन्तःकेंद्र की तीनों भुजाओं से लम्बवत दूरी भी समान होगी। यही तथ्य हाथ से अन्तःकेन्द्र निकालने के लिए उपयोग में लाया जाता है। किन्हीं दो कोणों का अर्धक खींचा जाता है और वे जहाँ काटते हैं वही इस त्रिभुज का अन्तःकेन्द्र होगा। यदि तीसरे कोण का भी अर्धक खींचा जाय तो वह भी पहले के दो अर्धकों के कटान-बिन्दु से होकर जाएगा। इस बिन्दु (अन्तःकेन्द्र) से किसी भी भुजा पर लम्बवत रेखा खींचते हैं, यह लम्ब उस भुजा को जहाँ काटता है वहाँ से अन्तःकेन्द्र की दूरी ही अन्तःत्रिजा है।

बहिर्वृत्त

किसी त्रिभुज के तीन बहिर्वृत्त होते हैं। ये तीनों वृत्त उस त्रिभुज के बाहर होते हैं। इनमें से प्रत्येक वृत्त, त्रिभुज की किसी एक भुजा को तथा शेष दो भुजाओं को आगे बढाने से बनी दो रेखाओं को स्पर्श करता है। अतः बहिर्केन्द्र निकालने के लिए त्रिभुज के बहिर्कोणों के अर्धक खींचे जाते हैं और दो अर्धक जहाँ मिलते हैं वही तीन बहिर्केन्द्रों में से एक होगा। (सबसे पहला चित्र देखें)

इन्हें भी देखें

सन्दर्भ

साँचा:Reflist