आयतन

testwiki से
नेविगेशन पर जाएँ खोज पर जाएँ

साँचा:ज्यामिति

सभी पदार्थ स्थान (त्रि-विमीय स्थान) घेरते हैं। इसी त्रि-विमीय स्थान की मात्रा की माप को आयतन कहते हैं। एक-विमीय आकृतियाँ (जैसे रेखा) एवं द्वि-विमीय आकृतियाँ (जैसे त्रिभुज, चतुर्भुज, वर्ग आदि) का आयतन शून्य होता है।

आयतन के सूत्र

आयतन के प्रमुख समीकरण:
आकार सूत्र चर (Variables) का अर्थ
घन (cube): s3 s = एक भुजा की लम्बाई
घनाभ (पैरेलोपाइप्ड) : lbh l = लम्बाई, b = चौड़ाई, h = ऊँचाई
लम्ब वृत्तीय बेलन (या, वृत्तीय प्रिज्म) : πr2h r = समतल वृत्तीय फलक (face) की त्रिज्या, h = ऊँचाई
कोई भी प्रिज्म, जिसकी पूरी ऊँचाई में सर्वत्र अनुप्रस्थ काट का क्षेत्रफल समान हो**: Ah A = आधार का क्षेत्रफल, h = ऊंचाई
गोला (sphere) 43πr3
गोले का आयतन उसके वक्र पृष्ठ के समाकलन (इन्टीग्रेशन) के बराबर होता है।
r = गोले की त्रिज्या
दीर्घ वृत्ताभ (ellipsoid): 43πabc a, b, c = दीर्घ वृत्ताभ के अर्धाक्ष (semi-axes) की माप
सूची स्तम्भ (Pyramid): 13Ah A = आधार का क्षेत्रफल, h = लम्बवत ऊँचाई
शंकु (Cone) या वृत्तीय आधार वाला सूची-स्तम्भ (pyramid): 13πr2h r = वृत्तीय आधार की त्रिज्या, h = शीर्ष (tip) की आधार से लम्बवत दूरी
किसी भी आकार के लिये (समाकलन का प्रयोग करना पड़ता है) A(h)dh h = आकृति का कोई बीमा (dimension), A(h) = h के लम्बवत क्षेत्रफल

(आयतन की इकाई घन मीटर', घन सेमी, लीटर आदि होती हैं।

किसी घनाभ के आयतन के लिये सदिश (वेक्टर) सूत्र :

किसी घनाभ के किसी एक शीर्ष पर मिलने वाली तीनों कोर () को सदिश रूप में व्यक्त करें तो उसका आयतन इन तीन सदिशों के अदिश गुणनफल (scalar triple product) के बराबर होता है।

किसी चतुष्फलकी (tetrahedron) के आयतन के लिये सदिश सूत्र :

किसी चतुष्फलकी के चारों शीर्षों के स्थिति सदिश (position vectors) a, b, c and d हों तो उसका आयतन (ab, bc, cd) के तिर्यक सदिश गुणनफल (scalar triple product) के १/६ के बराबर होता है।

आयतन और घनत्व (density)

किसी पदार्थ के इकाई आयतन में निहित द्रब्य

मान (mass) को उस पदार्थ का घनत्व कहते हैं। लोहे का घनत्व लकड़ी के घनत्व से अधिक होता है।

इन्हें भी देखें

बाहरी कड़ियाँ