कार्बन नैनोट्यूब

testwiki से
नेविगेशन पर जाएँ खोज पर जाएँ

साँचा:Nanomat

कार्बन नैनोट्यूब का घूर्णन करता यह एनिमेशन उसकी 3 डी संरचना को दर्शाता है।

साँचा:Seealso

कार्बन नैनोट्यूब (CNTs) एक बेलनाकार नैनोसंरचना वाले कार्बन के एलोट्रोप्स हैं। नैनोट्यूब को 28,000,000:1 तक के लंबाई से व्यास अनुपात के साथ निर्मित किया गया है,[][] जो महत्वपूर्ण रूप से किसी भी अन्य द्रव्य से बड़ा है। इन बेलनाकार कार्बन अणुओं में नवीन गुण हैं जो उन्हें नैनोतकनीक, इलेक्ट्रॉनिक्स, प्रकाशिकी और पदार्थ विज्ञान के अन्य क्षेत्रों के कई अनुप्रयोगों के साथ-साथ वास्तु क्षेत्र में संभावित रूप से उपयोगी बनाते हैं। वे असाधारण शक्ति और अद्वितीय विद्युत् गुण प्रदर्शित करते हैं और कुशल ताप परिचालक हैं। उनका अंतिम उपयोग, लेकिन, उनकी संभावित विषाक्तता और रासायनिक शोधन की प्रतिक्रिया में उनके गुण परिवर्तन को नियंत्रित करने के द्वारा सीमित हो सकता है।

नैनोट्यूब फुलरीन संरचनात्मक परिवार के सदस्य हैं, जिसमें गोलाकार बकिबॉल भी शामिल हैं। एक नैनोट्यूब के छोर को बकिबॉल संरचना के एक गोलार्द्ध के साथ ढका जा सकता है। उनका नाम उनके आकार से लिया गया है, चूंकि एक नैनोट्यूब का व्यास कुछ नैनोमीटर के क्रम में है (एक मानव बाल की चौड़ाई का लगभग 1/50,000 वां हिस्सा), जबकि वे लंबाई में कई मिलीमीटर हो सकते हैं (यथा 2008). नैनोट्यूब को एकल-दीवार नैनोट्यूब (SWNTs) और बहु-दीवार नैनोट्यूब (MWNTs) के रूप में वर्गीकृत किया गया है।

नैनोट्यूब के बॉन्ड की प्रकृति, व्यावहारिक क्वांटम रसायनशास्त्र द्वारा वर्णित है, विशेष रूप से, कक्षीय संकरण. नैनोट्यूब का रासायनिक बॉन्ड, ग्रेफाइट के समान ही पूर्ण रूप से sp 2 बॉन्ड से बना है। यह बॉन्ड संरचना, जो हीरे में पाए जाने वाले sp 3 बॉन्ड से भी मज़बूत है, अणुओं को उनकी अद्वितीय शक्ति प्रदान करता है। नैनोट्यूब स्वाभाविक रूप से स्वयं को "रस्सीयों" में संरेखित कर लेते हैं जो वान डेर वाल्स बल द्वारा एक साथ बद्ध रहता है।

कार्बन नैनोट्यूब के प्रकार और संबंधित संरचनाएं

एकल दीवार वाले

File:Carbon_nanotube_armchair_povray.PNG|आर्मचेयर (n,n) File:Carbon_nanorim_armchair_povray.PNG|काइरल वेक्टर मुड़ा हुआ है, जबकि अनुवाद वेक्टर सीधे रहता है File:Carbon_nanoribbon_povray.PNG|ग्राफीन नैनोरिबन File:Carbon_nanorim_zigzag_povray.PNG|काइरल वेक्टर मुड़ा हुआ है, जबकि अनुवाद वेक्टर सीधे रहता है File:Carbon_nanotube_zigzag_povray.PNG|ज़िगज़ैग (n, 0) File:Carbon_nanotube_chiral_povray.PNG|काइरल (n, m) File:Carbon_nanorim_chiral_povray.PNG|n और m को ट्यूब के अंत में गिना जा सकता है File:Carbon_nanoribbon_chiral_povray.PNG|ग्राफीन नैनोरिबन

(n, m) नैनोट्यूब नामकरण योजना को एक ग्राफीन शीट में एक वेक्टर (Ch) के रूप में समझा जा सकता है जो यह बताता है की नैनोट्यूब को बनाने के लिए ग्राफीन शीट को कैसे "घुमाएं". T ट्यूब धुरी को इंगित करता है और a1 और a2 रिअल स्पेस में ग्राफीन की इकाई वैक्टर है।
एक एकल-दीवार नैनोट्यूब को दिखाता इलेक्ट्रॉन माइक्रोग्राफ

अधिकांश एकल-दीवार नैनोट्यूब (SWNT) का व्यास करीब 1 नैनोमीटर होता है, जहां ट्यूब की लंबाई कई लाख गुना अधिक हो सकती है। एक ग्रेफाइट की एक-एटम मोटी परत को जिसे ग्रफीन कहा जाता है, एक निर्बाध सिलेंडर में लपेट कर एक SWNT की संरचना को संकल्पित किया जा सकता है। जिस तरीके से ग्रफीन शीट को लपेटा जाता है उसे सूचकांकों की एक जोड़ी (n,m) के द्वारा दर्शाया जाता है जिसे काइरल वेक्टर कहा जाता है। n और m पूर्णांक, ग्रफीन के हनिकौम क्रिस्टल लैटिस में दो दिशाओं में यूनिट वैक्टर की संख्या को दर्शाते हैं। यदि m = 0, नैनोट्यूब को "ज़िगज़ैग" कहा जाता हैं। यदि n = m, नैनोट्यूब को "आर्मचेयर" कहा कहा जाता है। अन्यथा, उन्हें "काइरल" कहते हैं।

एकल-दीवार नैनोट्यूब, कार्बन नैनोट्यूब के एक महत्वपूर्ण प्रकार हैं क्योंकि ऐसा विद्युत् गुण प्रदर्शित करते हैं जो बहु-दीवार कार्बन नैनोट्यूब (MWNT) प्रकार में नहीं पाया जाता. एकल-दीवार नैनोट्यूब, सूक्ष्म इलेक्ट्रॉनिक्स के लिए सबसे अधिक संभावित उम्मीदवार हैं जो वर्तमान में इलेक्ट्रोनिक्स में प्रयुक्त होने वाले माइक्रो इलेक्ट्रोमेकेनिकल से परे है। इन पद्धतियों का सबसे मूल निर्माण खंड बिजली का तार है और SWNTs उत्कृष्ट परिचालक हो सकते हैं।[][] एक SWNTs के उपयोगी अनुप्रयोग पहले intramolecular क्षेत्र प्रभाव ट्रांजिस्टर (FET) के विकास में है। SWNT FETs का प्रयोग करते हुए पहले इंट्रामोलीक्युलर लॉजिक गेट का उत्पादन भी हाल ही में संभव हो पाया है।[] एक लॉजिक गेट का निर्माण करने के लिए आपके पास p-FET और एक n-FET, दोनों होना ज़रूरी है। क्योंकि SWNTs p-FETs होते हैं जब इनका संपर्क ऑक्सीजन से होता है और अन्यथा FETs रहते हैं, एक SWNT के आधे भाग को ऑक्सीजन के संपर्क में लाते हुए दूसरे आधे भाग को ऑक्सीजन से बचाना संभव है। इसका परिणाम एक एकल SWNT होता है जो समान अणु के भीतर p और n-प्रकार के दोनों FETs के साथ एक NOT लॉजिक गेट के रूप में कार्य करता है।

एकल-दीवार नैनोट्यूब का उत्पादन अभी भी बहुत महंगा है, यथा 2000 प्रति ग्राम करीब $1500 और अधिक किफायती संश्लेषण तकनीक का विकास कार्बन नैनोतकनीक के भविष्य के लिए महत्वपूर्ण है। यदि संश्लेषण का सस्ता तरीका नहीं खोजा जाता है, तो इसके कारण इस तकनीक को व्यावसायिक पैमाने पर लागू करना वित्तीय रूप से असंभव हो जाएगा.[] यथा 2007, कई आपूर्तिकर्ता यथा-उत्पादन आर्क डिस्चार्ज SWNTs ~ $50–100 प्रति ग्राम देते हैं।[][]

बहु-दीवार

कार्बन नैनोट्यूब बंडलों की SEM छवि.

बहु-दीवार नैनोट्यूब (MWNT) ग्रेफाइट के कई घुमावदार परतों (संघनित ट्यूब) से बने होते हैं। दो मॉडल हैं जिनका प्रयोग बहु-दीवार नैनोट्यूब के ढांचे का वर्णन करने के लिए किया जा सकता है। रसियन डौल मॉडल में, ग्रेफाइट की चादरें संघनित सिलेंडरों में आयोजित होती हैं, उदाहरण है एक बड़े (0,10) एकल-दीवार नैनोट्यूब के भीतर एक (0,8) एकल-दीवार नैनोट्यूब (SWNT). पार्चमेंट मॉडल में, ग्रेफाइट की एक चादर अपने आप में घूमी हुई होती है, जो पार्चमेंट के चिट्ठे या एक गोलाकार लपेटे अखबार की तरह होती है। बहु-दीवार नैनोट्यूब में आतंरिक परत दूरी, ग्रेफाइट में ग्रफीन परतों के बीच की दूरी के करीब होती है, लगभग 3.3 Å.

दोहरी-दीवार कार्बन नैनोट्यूब (DWNT) की खास जगह पर यहां जोर दिया जाना चाहिए क्योंकि उनका आकृति विज्ञान और गुण, SWNT के समान है, लेकिन रसायनों के प्रति उनका प्रतिरोध काफी सुधारा हुआ है। यह विशेष रूप से तब महत्वपूर्ण है जब CNT में नए गुण जोड़ने के लिए कार्यात्मकता के आवश्यकता होती है (इसका अर्थ है नैनोट्यूब की सतह पर रासायनिक कार्यों को आरोपित करना). SWNT के मामले में, कोवैलेंट कार्यात्मकता कुछ C = C डबल बांड को तोड़ेगी, जिससे नैनोट्यूब पर संरचना में "छेद" हो जाएगा और इस प्रकार इसके यांत्रिक और विद्युत्, दोनों गुणों में संशोधिन होगा। DWNT के मामले में, केवल बाहरी दीवार में संशोधन किया जाता है। मीथेन और हाइड्रोजन में ऑक्साइड मिश्रण के चुनिंदा घटाव से, ग्राम-स्केल पर DWNT संश्लेषण, CCVD तकनीक द्वारा पहली बार 2003 में प्रस्तावित किया गया था[].

टोरस

एक स्थिर नैनोबड संरचना

एक नैनोटोरस को सैद्धांतिक रूप से एक कार्बन नैनोट्यूब के रूप में वर्णित किया जाता है जिसे एक टोरस (डोनट आकार) में मोड़ा गया है। नैनोटोरी में कई विशिष्ट गुण होने की भविष्यवाणी की गई है, जैसे कुछ विशेष radii के लिए पूर्व में अपेक्षित चुंबकीय क्षण से 1000 गुना बड़ा.[१०] चुंबकीय क्षण, विद्युत् स्थायित्व व अन्य गुण, टोरस की त्रिज्या और ट्यूब की त्रिज्या के आधार पर व्यापक रूप से भिन्न होते हैं।[१०][११]

नैनोबड

कार्बन नैनोबड नव निर्मित पदार्थ हैं जिन्हें पूर्व में खोजे गए कार्बन के एलोट्रोप्स, कार्बन नैनोट्यूब और फुलरीन को मिश्रित करके बनाया गया है। इस नए पदार्थ में, फुलरीन-सदृश बड, कोवैलेंट रूप से अंतर्निहित कार्बन नैनोट्यूब की बाहरी बगल दीवार से बद्ध होते हैं। इस संकर पदार्थ में फुलरीन और कार्बन नैनोट्यूब, दोनों के उपयोगी गुण हैं। विशेष रूप से, उन्हें असाधारण रूप से अच्छा फील्ड उत्सर्जक पाया गया है। यौगिक पदार्थ में, संलग्न फुलरीन अणु, नैनोट्यूब के फिसलन को रोकते हुए आणविक एंकर के रूप में कार्य कर सकते हैं और इस प्रकार यौगिक के यांत्रिक गुणों में सुधार करते हैं।

कप स्टैक्ड कार्बन नैनोट्यूब

कप स्टैक्ड कार्बन नैनोट्यूब (CSCNTs) अन्य अर्ध-1 D कार्बन संरचनाओं से भिन्न हैं जो सामान्य रूप से इलेक्ट्रॉन के एक धातु परिचालक के रूप में व्यवहार करते हैं, CSCNTs ग्रफीन परतों के खड़े सूक्ष्म ढांचे के कारण अर्ध-परिचालक व्यवहार का प्रदर्शन करते हैं।[१२]

गुण

मज़बूती

कार्बन नैनोट्यूब, तनन-सामर्थ्य और लोचदार मापांक के मामले में अब तक के खोजे गए क्रमशः सबसे मज़बूत और सबसे कठोर पदार्थ हैं। यह मजबूती, व्यक्तिगत कार्बन परमाणुओं के बीच गठित कोवैलेंट sp² बांड का परिणाम है। 2000 में, एक बहु-दीवार कार्बन नैनोट्यूब में 63 गीगापास्कल्स (GPa) का तनन-सामर्थ्य होने के लिए जांचा गया था।[१३] (उदाहरण के लिए, यह 1 mm2 के क्रॉस-सेक्शन वाले केबल पर 6300 किलो वजन के बराबर का तनाव सहन करने की क्षमता में तब्दील होता है।) चूंकि कार्बन नैनोट्यूब में, 1.3 से लेकर 1.4 g.cm−3 के ठोस के लिए एक कम घनत्व है,[] उच्च कार्बन इस्पात के 154 kN.m·kg·−1 की तुलना में, 48,000 kN·m·kg−1 तक की इसकी विशिष्ट मज़बूती ज्ञात पदार्थों में सर्वश्रेष्ठ है।

अत्यधिक लचीले-तनाव के तहत, ट्यूब प्लास्टिक विकार से गुजरते हैं, जिसका मतलब है कि विकार स्थायी है। यह विकार लगभग 5% के तनाव में शुरू होता है और तनाव ऊर्जा को छोड़ते हुए फ्रैक्चर से पहले, ट्यूब की क्षमतानुसार अधिकतम तनाव बढ़ सकता है।

CNT संपीड़न के तहत लगभग उतने मज़बूत नहीं हैं। उनके खोखले ढांचे और उच्च अभिमुखता अनुपात की वजह से, जब उन्हें संपीड़न, मरोड़ या झुकाव की क्रिया से गुज़ारा जाता है तो वे बकलिंग से गुजरते हैं। [सन्दर्भ की आवश्यकता!]

यांत्रिक गुणों की तुलना
[१३][१४][१५][१६][१७][१८][१९][२०]
पदार्थ यंग का मापांक (TPa) तनन-सामर्थ्य (GPa) (%) टूटते समय खिंचाव
SWNT ~1 (from 1 to 5) 13–53E 16
आर्मचेयर SWNT 0.94 T 126.2 T 23.1
ज़िगज़ैग SWNT 0.94 T 94.5 T 15.6-17.5
काइरल SWNT 0.92
MWNT 0.8-0.9 E 11-150 E
स्टेनलेस स्टील ~0.2 ~ 0.65-3 15-50
केवलर ~0.15 ~3.5 ~ 2
केवलर T 0.25 29.6

E प्रायोगिक अवलोकन; T सैद्धांतिक भविष्यवाणी

उपर्युक्त चर्चा नैनोट्यूब के अक्षीय गुणों को सन्दर्भित करती है, जबकि सरल ज्यामितीय विमर्श सुझाते हैं कि कार्बन नैनोट्यूब, ट्यूब धुरी के साथ की बजाय रेडियल दिशा में अधिक नरम होने चाहिए। यकीनन, रेडियल लोच के TEM अवलोकन ने यह सुझाया कि वान डेर वाल्स बल, दो समीपवर्ती नैनोट्यूब को ख़राब कर सकते हैं।[२१] बहु-दीवार कार्बन नैनोट्यूब पर कई संगठनों द्वारा किए गए नैनो अभिस्थापन प्रयोग ने[२२][२३] यंग के मापांक का संकेत दिया कि कई GPa के क्रम का यह पुष्टि करना कि CNTs वास्तव में रेडियल दिशा में नरम होते हैं।

कठोरता

हीरे को सबसे कठोर पदार्थ माना जाता है और यह अच्छी तरह से ज्ञात है कि ग्रेफाइट उच्च तापमान और उच्च दबाव की परिस्थितियों में हीरे में परिवर्तित हो जाता है। SWNTs को घरेलु तापमान पर 24 GPa से ऊपर का दबाव देते हुए एक अत्यंत कठोर पदार्थ के संश्लेषण में, एक अध्ययन सफल रहा। इस पदार्थ की कठोरता को एक नैनोअभिस्थापक से 62-152 GPa मापी गई। सन्दर्भ हीरे और बोरान नाइट्राइड नमूनों की कठोरता क्रमशः 150 और 62 GPa थी। संपीड़ित SWNTs का थोक मापांक 462-546 GPa था, जिसने हीरे के 420 GPa के मूल्य को पीछे कर दिया। [२४]

गतिजन्य

बहु-दीवार नैनोट्यूब, एक दूसरे के भीतर समाहित बहु संघनित नैनोट्यूब, एक आश्चर्यजनक टेलिस्कोपीय गुण प्रदर्शित करते हैं जिसके तहत एक आंतरिक नैनोट्यूब केंद्र, अपने बाहरी नैनोट्यूब खोल में लगभग बिना घर्षण के खिसक सकता है, इस तरह एक आणवीय रूप से सटीक रेखीय या घूर्णी असर पैदा करता है। यह आणविक नैनोतकनीक का एक पहला सही उदाहरण है, जिसके तहत उपयोगी मशीन बनाने के लिए परमाणु सटीक स्थिति में जाते हैं। पहले से ही इस गुण का उपयोग दुनिया के सबसे छोटे घूर्णी मोटर बनाने के लिया किया जा चूका है।[२५] भावी अनुप्रयोग जैसे गीगाहर्ट्ज़ यांत्रिक ओसिलेटर की भी परिकल्पना की गई है।

वैद्युत

ग्राफीन की सममिति और अद्वितीय इलेक्ट्रॉनिक संरचना की वजह से, एक नैनोट्यूब का ढांचा, इसके विद्युत गुणों को अत्यधिक प्रभावित करता है। दिए गए एक (n, m) नैनोट्यूब के लिए, यदि n = m, नैनोट्यूब धात्विक है; अगर n - m, 3 का एक गुणज है, तो नैनोट्यूब एक अत्यंत छोटे बैंड अंतराल वाला अर्ध-परिचालक है, अन्यथा नैनोट्यूब एक मध्यम अर्धचालक है। इस प्रकार सभी आर्मचेयर (n = m) नैनोट्यूब धात्विक हैं और नैनोट्यूब (5,0), (6,4), (9,1), आदि अर्ध-परिचालक हैं। सिद्धांत रूप में, धात्विक नैनोट्यूब 4 × 109 A/cm2 की एक विद्युत घनत्व धारा को ले जा सकता है, जो तांबा जैसी धातुओं से 1,000 गुना से अधिक बड़ा है।[२६]

अंतरसम्बंधित आतंरिक खोल वाले बहु-दीवार कार्बन नैनोट्यूब, अपेक्षाकृत एक उच्च संक्रमण तापमान प्रदर्शित करते हैं Tc = 12 K. इसके विपरीत, Tc मूल्य, ऐसे परिमाण का एक क्रम है जो एकल-दीवार कार्बन नैनोट्यूब की रस्सियों के लिए न्यून है या हमेशा की तरह गैर अंतरसम्बंधित खोल वाले MWNTs के लिए। [२७]

ऑप्टिकल

साँचा:Main

तापीय

साँचा:Main सभी नैनोट्यूब को, ट्यूब के साथ बहुत अच्छा ताप परिचालक माना जाता है, जो "बैलिस्टिक चालन" के रूप में ज्ञात एक गुण का प्रदर्शन करते हैं, लेकिन पार्श्विक रूप से ट्यूब धुरी के लिए अच्छे विसंवाहक. मापन, SWNTs के घरेलु तापमान पर तापीय चालकता को करीब 3500 W/(m·K) दिखाते हैं[२८], इसकी तुलना में तांबा, अपनी अच्छी तापीय चालकता के लिए ज्ञात एक धातु, 385 W.m−1। K−1 संचारित करता है। कार्बन नैनोट्यूब का तापमान स्थिरता, अनुमानित रूप से, निर्वात में 2800 डिग्री सेल्सियस तक और हवा में करीब 750 डिग्री सेल्सियस है।[२९]

दोष

तमाम पदार्थों की तरह, क्रिस्टलीयग्राफिक दोष की मौजूदगी पदार्थ के गुणों को प्रभावित करता है। दोष, परमाणु रिक्तियों के रूप में हो सकते हैं। ऐसे दोषों का उच्च स्तर, तनन-सामर्थ्य को 85% तक कम कर सकता है। कार्बन नैनोट्यूब दोष का एक दूसरा रूप स्टोन वेल्स दोष है, जो बांड के पुनर्निर्माण के द्वारा एक पंचकोण और सप्तकोण जोड़ी बनाता है। CNTs की बहुत छोटी संरचना के कारण, ट्यूब का तनन-सामर्थ्य एक चेन के समान उसके सबसे कमजोर वर्ग पर निर्भर रहता है, जहां सबसे कमजोर कड़ी की मज़बूती चेन की अधिकतम शक्ति बन जाती है।

क्रिस्टलीयग्राफिक दोष, ट्यूब के विद्युत गुण को भी प्रभावित करते हैं। एक आम परिणाम है - ट्यूब की दोषपूर्ण क्षेत्र के माध्यम से न्यून चालकता. आर्मचेयर-प्रकार के ट्यूब में एक दोष (जो बिजली के चालाक हैं) आसपास के क्षेत्र को अर्ध-परिचालक बना सकते हैं और एकल मोनोएटोमिक रिक्तियां चुंबकीय गुण को प्रेरित करती हैं।[३०]

क्रिस्टलीयग्राफिक दोष, ट्यूब के तापीय गुणों को अत्यधिक प्रभावित करते हैं। इस तरह के दोष, फोनन प्रकीर्णन को प्रेरित करते हैं, जो बदले में फोनन की विश्रांति दर को बढ़ाता है। यह मीन फ्री पाथ को कम कर देता है और नैनोट्यूब संरचनाओं की तापीय चालकता को कम कर देता है। फोनन ट्रांसपोर्ट सिमुलेशन से संकेत मिलता है कि स्थानापन्न सम्बन्धी दोष जैसे की नाइट्रोजन या बोरान, उच्च फ्रीक्वेंसी ऑप्टिकल फोनन के प्रकीर्णन को मुख्य रूप से प्रेरित करेंगे। हालांकि, बड़े पैमाने दोष जैसे स्टोन वेल्स दोष, विस्तृत श्रृंखला की आवृत्तियों पर फोनन प्रकीर्णन को प्रेरित करता है जिसके परिणामस्वरूप तापीय चालकता में काफी कमी हो जाती है।[३१]

एक आयामी परिवहन

नैनोस्केल आयामों की वजह से, इलेक्ट्रॉन, केवल ट्यूब धुरी के आस-पास फैलते हैं और इलेक्ट्रॉन परिवहन में कई क्वांटम प्रभाव शामिल है। इस कारण से, कार्बन नैनोट्यूब को अक्सर "एक-आयामी" सन्दर्भित किया जाता है।

विषाक्तता

कार्बन नैनोट्यूब की विषाक्तता निर्धारण करना, नैनोतकनीक में सबसे अहम सवालों में से एक रहा है। दुर्भाग्य से, ऐसे शोध केवल अभी शुरू हुए हैं और आंकड़े अभी भी अपूर्ण और आलोचना के अधीन हैं। प्रारंभिक परिणाम, इस विषम पदार्थ की विषाक्तता के मूल्यांकन में होने वाली कठिनाइयों पर प्रकाश डालते हैं। मापदंड, जैसे की संरचना, आकार वितरण, सतह क्षेत्र, सतह रसायन, सतह प्रभार और पुंज स्थिति के साथ-साथ नमूनों की शुद्धता का कार्बन नैनोट्यूब की प्रतिक्रियाशीलता पर काफी प्रभाव पड़ता है। लेकिन, उपलब्ध आंकड़े स्पष्ट रूप से बताते हैं कि, कुछ परिस्थितियों के अंतर्गत, नैनोट्यूब झिल्ली बाधाओं को पार कर सकते हैं, जिससे यह संकेत मिलता है कि अगर कच्चे माल, अंगों तक पहुंचते हैं तो वे हानिकारक प्रभाव पैदा कर सकते हैं जैसे की सूजन और तंतुमय प्रतिक्रिया.[३२]

कैम्ब्रिज विश्वविद्यालय की अलेक्सांड्रा पोर्टर के नेतृत्व में किये गए एक अध्ययन से पता चलता है कि CNTs मानव कोशिकाओं में प्रवेश कर सकते हैं और साइटोप्लास्म में जमा हो सकते हैं, जिससे कोशिका मृत्यु होती है।[३३]

कृंतक अध्ययन के परिणाम बताते हैं कि चाहे किसी भी प्रक्रिया से CNTs को संश्लेषित किया गया हो और धातुओं की कितनी भी मात्रा और प्रकार उनमें हो, CNTs सूजन, उपकलाभ कणिकागुल्म (सूक्ष्म पिंड), फाइब्रोसिस और फेफड़ों में जैवरासायनिक/विषाक्त परिवर्तन पैदा करने में सक्षम थे।[३४] तुलनात्मक विषाक्तता अध्ययन ने, जिसमें चूहों को परीक्षा सामग्री का बराबर वजन दिया गया यह दर्शाया कि SWCNTs क्वार्ट्ज से ज्यादा जहरीले हैं, जिसे लंबे समय तक सांसों में घुलने की स्थिति में एक गंभीर व्यावसायिक स्वास्थ्य खतरा माना गया। एक नियंत्रण के रूप में, अल्ट्राफाइन कार्बन ब्लैक को न्यूनतम फेफड़ों की प्रतिक्रियाएं उत्पन्न करते हुए दिखाया गया।[३५]

अभ्रक तंतुओं के समान ही, CNTs का सुई की तरह का फाइबर आकार, यह डर पैदा करता है कि कार्बन नैनोट्यूब का व्यापक उपयोग मध्यकलार्बुध को जन्म दे सकता है, फेफड़ों की लाइनिंग का कैंसर जो अक्सर अभ्रक से संपर्क के कारण होता है। हाल ही में प्रकाशित एक पायलट अध्ययन इस भविष्यवाणी का समर्थन करता है।[३६] वैज्ञानिकों ने, सीने की गुहा के मेसोथीलिअल परत के लिए एक स्थानापन्न के रूप में चूहे के शरीर गुहा के मेसोथेलिअल परत को एक लंबे बहु-दीवार कार्बन नैनोट्यूब में उद्घाटित किया है और अभ्रक की तरह, लंबाई पर निर्भर, रोगजनक व्यवहार देखा जिसमें शामिल थी सूजन और घावों का गठन जिसे कणिकागुल्म के नाम से जाना जाता है। अध्ययन के लेखक निष्कर्ष में कहते हैं:

"यह काफी महत्वपूर्ण है, क्योंकि उत्पादों की एक विस्तृत श्रृंखला के लिए अनुसंधान और व्यापारिक समुदाय का इस धारणा के तहत कार्बन नैनोट्यूब में भारी निवेश करना जारी है कि वे अभ्रक से ज्यादा खतरनाक नहीं हैं। यदि दीर्घकालिक नुकसान से बचना है तो हमारे परिणाम सुझाते हैं कि बाज़ार में ऐसे उत्पादों को पेश करने से पहले और अधिक शोध व बहुत सावधानी की जरूरत है।[३६]

सह लेखक डॉ॰ एंड्रयू मेनार्ड के अनुसार:

"यह अध्ययन वास्तव में सामरिक, अत्यधिक केंद्रित अनुसंधान की तरह है जिसकी आवश्यकता नैनोतकनीक के सुरक्षित और जिम्मेदार विकास को सुनिश्चित करने के लिए है। यह एक विशिष्ट नैनोस्केल पदार्थ पर विचार करता है जिसके बड़े पैमाने पर व्यावसायिक अनुप्रयोग होने की संभावना है और एक विशिष्ट स्वास्थ्य जोखिम के बारे में विशिष्ट सवाल पूछता है। हालांकि, एक दशक से पहले से वैज्ञानिक, लम्बे, पतले कार्बन नैनोट्यूब की सुरक्षा के बारे में चिंता दर्शाते रहे हैं, मौजूदा अमेरिकी संघीय नैनो पर्यावरण में कोई भी अनुसंधान, स्वास्थ्य और सुरक्षा जोखिम अनुसंधान रणनीति के इस सवाल का उत्तर देता है।[३७]

यद्यपि, अधिक अनुसंधान की जरूरत है, आज प्रस्तुत किये गए परिणाम स्पष्ट रूप से प्रदर्शित करते हैं कि, कुछ निश्चित परिस्थितियों में, विशेष रूप से दीर्घकालिक संपर्क वाली, कार्बन नैनोट्यूब मानव स्वास्थ्य के लिए गंभीर खतरा उत्पन्न कर सकते हैं।[३२][३३][३५][३६]

संश्लेषण

कार्बन नैनोट्यूब का पाउडर

पर्याप्त मात्रा में नैनोट्यूब के उत्पादन के लिए तकनीकें विकसित की गई हैं, जिसमें शामिल है आर्क डिस्चार्ज, लेज़र पृथक्करण, उच्च दबाव कार्बन मोनोआक्साइड (HiPCO) और रासायनिक वाष्प जमाव (सीवीडी). इनमें से अधिकांश प्रक्रियाएं निर्वात में या प्रक्रिया गैसों के साथ संपादित होती है। CNTs का CVD विकास, निर्वात में या वायुमंडलीय दबाव में हो सकता है। नैनोट्यूब की एक बड़ी मात्रा को इन विधियों द्वारा संश्लेषित किया जा सकता है; कटैलिसीस में सुधार और सतत विकास प्रक्रिया, CNTs को आर्थिक रूप से अधिक व्यावहारिक बना रही है।

आर्क डिस्चार्ज

नैनोट्यूब को 1991 में एक आर्क डिस्चार्ज के दौरान, ग्रेफाईट इलेक्ट्रोड की कार्बन कालिख में देखा गया, 100 amps के विद्युत का उपयोग करके, जिसे फुलरीन का उत्पादन करना था।[३८] बहरहाल, कार्बन नैनोट्यूब का पहला स्थूल उत्पादन 1992 में NEC के फंडामेंटल रिसर्च लेबोरेटरी में दो शोधकर्ताओं द्वारा किया गया था।[३९] प्रयोग विधि 1991 वाली के समान ही थी। इस प्रक्रिया के दौरान, नकारात्मक इलेक्ट्रोड में निहित कार्बन का उच्च तापमान विसर्जन के कारण उर्ध्वपातन होता है। चूंकि शुरू में नैनोट्यूब, इस तकनीक के उपयोग से खोजे गए थे, यह नैनोट्यूब संश्लेषण का सबसे व्यापक रूप से इस्तेमाल किया जाने वाला तरीका है।

इस विधि के लिए उपज, वजन के हिसाब से 30 प्रतिशत तक है और यह 50 माइक्रोमीटर तक की लंबाई वाले एकल और बहु-दीवार नैनोट्यूब, दोनों का उत्पादन करता है, जिसमें कुछ ही संरचनात्मक दोष होते हैं।[]

लेज़र पृथक्करण

लेज़र पृथक्करण प्रक्रिया में, एक स्पंदित लेजर, एक उच्च तापमान रिएक्टर में एक लक्ष्यित ग्रेफाइट को वाष्पीकृत करता है जबकि एक अक्रिय गैस को चेंबर में बहाया जाता है। और जब वाष्पीकृत कार्बन संघनित होता है तो नैनोट्यूब रिएक्टर की ठंडी सतहों पर विकसित होते हैं। नैनोट्यूब इकट्ठा करने के लिए पानी से ठंडी की गई सतह को प्रणाली में शामिल किया जा सकता है।

इस प्रक्रिया को राईस यूनिवर्सिटी के डॉ॰ रिचर्ड स्मॉले और सहयोगियों द्वारा विकसित किया गया, जो कार्बन नैनोट्यूब की खोज के समय, विभिन्न धातु अणुओं के उत्पादन के लिए धातुओं को एक लेजर से विस्फोट कर रहे थे। जब उन्होंने नैनोट्यूब के अस्तित्व के बारे में सुना तो उन्होंने बहु-दीवार कार्बन नैनोट्यूब का निर्माण करने के लिए, धातुओं को ग्रेफाइट से प्रतिस्थापित कर दिया। [४०] बाद में उस वर्ष, इस दल ने एकल-दीवार कार्बन नैनोट्यूब के संश्लेषण के लिए ग्रेफाईट के यौगिक और धातु उत्प्रेरक कण (सबसे अच्छी उपज कोबाल्ट और गिलट मिश्रण से थी) का इस्तेमाल किया।[४१]

लेज़र पृथक्करण विधि 70% के आसपास उत्पन्न करती है और मुख्य रूप से प्रतिक्रिया तापमान द्वारा निर्धारित नियंत्रणीय व्यास के साथ, एकल-दीवार कार्बन नैनोट्यूब का उत्पादन करती है। तथापि, यह आर्क डिस्चार्ज या रासायनिक वाष्प जमाव से ज्यादा महंगी है।[]

रासायनिक वाष्प जमाव (CVD)

प्लाज्मा वर्धित रासायनिक वाष्प जमाव से विकसित किये जाते नैनोट्यूब

कार्बन के उत्प्रेरक भाप चरण जमाव की पहली सूचना 1959 में दी गई थी,[४२] लेकिन 1993 तक[४३] इस प्रक्रिया द्वारा कार्बन नैनोट्यूब नहीं बनाए गए। 2007 में, सिनसिनाटी विश्वविद्यालय (UC) में शोधकर्ताओं ने फर्स्टनैनो ET3000 कार्बन नैनोट्यूब विकास प्रणाली पर 18 mm लंबाई के संरेखित कार्बन नैनोट्यूब विन्यास का विकास करने के लिए एक प्रक्रिया इजाद की। [४४]

CVD के दौरान, धातु उत्प्रेरक कणों की एक परत से एक सबस्ट्रेट तैयार किया जाता है, आम रूप से गिलट, कोबाल्ट,[४५], लोहा, या एक संयोजन.[४६] इन धातु नैनोकणों को अन्य तरीकों द्वारा भी उत्पादित किया जा सकता है, जैसे आक्साइड की कटौती या आक्साइड के ठोस घोल से. नैनोट्यूब के व्यास, जिन्हें बढ़ाना है वे धातु कणों के आकार से संबंधित होते हैं। इसे धातु के व्यवस्थित (या मुखौटा युक्त) जमाव, ताप देकर, या किसी धातु की परत के प्लाज्मा निक्षारण द्वारा नियंत्रित किया जा सकता है। सबस्ट्रेट को लगभग 700 डिग्री सेल्सियस तक गरम किया जाता है। नैनोट्यूब के विकास को आरंभ करने के लिए, रिएक्टर में दो गैसों को बहाया जाता है: एक प्रक्रिया गैस (जैसे अमोनिया, नाइट्रोजन या हाइड्रोजन) और एक कार्बन-युक्त गैस (जैसे एसिटिलीन, ईथीलीन, इथेनॉल या मीथेन). नैनोट्यूब, धातु उत्प्रेरक के स्थलों पर बढ़ते हैं; कार्बन युक्त गैस को उत्प्रेरक कण की सतह पर तोड़ा जाता है और कार्बन, कण के छोर पर चला जाता है जहां यह नैनोट्यूब का निर्माण करता है। इस क्रियाविधि का अभी भी अध्ययन किया जा रहा है। उत्प्रेरक कण, विकास प्रक्रिया के दौरान, उत्प्रेरक कण और सबस्ट्रेट के बीच आसंजन के आधार पर, बढ़ते नैनोट्यूब के मुहाने पर या नैनोट्यूब के तल पर बने रह सकते हैं।

कार्बन नैनोट्यूब के वाणिज्यिक उत्पादन के लिए CVD एक आम तरीका है। इस प्रयोजन के लिए, धातु नैनोकणों को एक उत्प्रेरक सहायक के साथ मिश्रित किया जाता है जैसे MgO या Al2O3 ताकि धातु के कणों के साथ कार्बन फीडस्टॉक की उत्प्रेरक प्रतिक्रिया की अधिक उपज के लिए सतही क्षेत्र में वृद्धि की जा सके। इस संश्लेषण मार्ग में एक मुद्दा, एसिड प्रयोग, जो कभी-कभी कार्बन नैनोट्यूब के मूल ढांचे को नष्ट कर सकता है, के द्वारा उत्प्रेरक समर्थन को हटाना है। हालांकि, वैकल्पिक उत्प्रेरक समर्थन जो पानी में घुलनशील हैं, नैनोट्यूब विकास के लिए प्रभावी सिद्ध हुए हैं।[४७]

विकास प्रक्रिया (प्लाज्मा वर्धित रासायनिक वाष्प जमाव*) के दौरान यदि एक प्लाज्मा, एक तीव्र विद्युत् क्षेत्र के अनुप्रयोग द्वारा उत्पन्न होता है, तो नैनोट्यूब विकास, विद्युत क्षेत्र की दिशा का अनुगमन करेगा। [४८] रिएक्टर के ज्यामिति को समायोजित करके, खड़े संरेखित कार्बन नैनोट्यूब को संश्लेषित करना संभव है[४९] (यानी, सबस्ट्रेट के लम्बवत), एक आकृति विज्ञान जो नैनोट्यूब से इलेक्ट्रॉन उत्सर्जन में रुचि रखने वाले शोधकर्ताओं की रूचि का केंद्र रहा है। प्लाज्मा के बिना, परिणामस्वरूप प्राप्त नैनोट्यूब अक्सर अनियमित उन्मुख होते हैं। प्रतिक्रिया की कुछ स्थितियों के तहत, यहां तक कि एक प्लाज्मा के अभाव में, नजदीकी अंतराल में रखे नैनोट्यूब, एक ऊर्ध्वाधर वृद्धि बनाए रखते हैं जो एक जंगल के कालीन से मिलते-जुलते ट्यूबों के एक घने विन्यास में परिणत होता है।

नैनोट्यूब संश्लेषण के विभिन्न तरीकों में, औद्योगिक पैमाने पर जमाव के लिए CVD सबसे अधिक आशा दिखाता है, इसका कारण है इसकी कीमत/इकाई अनुपात और क्योंकि CVD एक वांछित सबस्ट्रेट पर सीधे नैनोट्यूब निर्माण करने में सक्षम है, जबकि अन्य विकास तकनीक में नैनोट्यूब को एकत्र करना पड़ता है। विकास स्थान, उत्प्रेरक के ध्यानपूर्वक जमाव से नियंत्रित किये जा सकते हैं। 2007 में, मेजो विश्वविद्यालय के एक दल ने कपूर से कार्बन नैनोट्यूब निर्माण की एक उच्च दक्षता CVD तकनीक का प्रदर्शन किया।[५०] राइस विश्वविद्यालय में शोधकर्ताओं ने, हाल ही में दिवंगत डॉ॰ रिचर्ड स्मौले के नेतृत्व में, विशेष प्रकार के नैनोट्यूब की बड़ी और शुद्ध मात्रा के उत्पादन के तरीके को खोजने पर ध्यान केन्द्रित किया। उनके तरीके में एक एकल नैनोट्यूब से काटे गए कई छोटे बीजों से लंबे तंतुओं का विकास किया जाता है; परिणामस्वरूप प्राप्त सारे तंतुओं का व्यास मूल नैनोट्यूब के समान ही पाया गया और आशा है कि वे उसी प्रकार के होंगे जैसे मूल नैनोट्यूब हैं। परिणामस्वरूप प्राप्त नैनोट्यूब के वर्गीकरण और उपज में सुधार और विकसित किये गए ट्यूब की लंबाई की आवश्यकता है।[५१]

बहु-दीवार नैनोट्यूब के CVD विकास का उपयोग कई कंपनियों द्वारा टन पैमाने पर सामग्री के उत्पादन के लिए किया जाता है[५२], जिसमें शामिल हैं नैनोलैब, बायर, अर्केमा, नैनोसिल, नैनोथिंक्स,[५३] हाईपीरियन कटैलिसीस, मित्सुई और शोवा ड़ेंको.

सुपर-विकास CVD

चित्र:CNT-BlackBody.jpg
सुपर-ग्रोथ द्वारा उत्पादित एक छोटा SWNT नमूना

सुपर-विकास CVD (जल-समर्थित रासायनिक वाष्प जमाव) प्रक्रिया, केंजी हटा, सुमिओ लिजिमा और AIST, जापान के सह-कर्मचारियों द्वारा विकसित की गई थी।[५४] इस प्रक्रिया में, उत्प्रेरक की गतिविधियों और जीवन को CVD रिएक्टर में पानी मिलाकर बढ़ाया जाता है। मिलीमीटर-लंबा घना नैनोट्यूब "फ़ॉरेस्ट", सबस्ट्रेट से सामान्य संरेखित का उत्पादन किया गया। फ़ॉरेस्ट विकास दर को निम्न रूप में व्यक्त किया जा सकता है

H(t)=βτo(1et/τo).

इस समीकरण में, β प्रारंभिक विकास दर है और {\tau}_o विशेषता उत्प्रेरक आजीवन है।[५५]

उनकी विशिष्ट सतह 1,000 m2/g (कैप्ड) से अधिक होती है या 2,200 m2/g (अनकैप्ड),[५६] HiPco नमूनों के 400-1,000 m2/g के मूल्य से अधिक. संश्लेषण कुशलता, लेज़र पृथक्करण पद्धति से करीब 100 गुना अधिक है। इस विधि से 2.5 mm ऊंचाई के SWNT फ़ॉरेस्ट बनाने के लिए आवश्यक समय 2004 में 10 मिनट था। उन SWNT फ़ॉरेस्ट को आसानी से उत्प्रेरक से अलग किया जा सकता है, आगे और शुद्धि के बिना साफ SWNT सामग्री उत्पादित की जा सकती है (शुद्धता> 99.98%). तुलना के लिए, जैसा कि विकसित HiPco CNTs में 5-35%[५७] धातु अशुद्धता शामिल होती है; इसलिए इसका शुद्धिकरण फैलाव और सेंट्रीफ्युगेशन के माध्यम से होता है जो नैनोट्यूब को नुकसान पहुंचाता है। सुपर-विकास प्रक्रिया इस समस्या से बचने की अनुमति देती है। पैटर्न युक्त उच्च आयोजित एकल-दीवार नैनोट्यूब की संरचनाओं को सुपर-विकास तकनीक का उपयोग कर सफलतापूर्वक गढ़ा गया।

सुपर-विकास CNTs का मास घनत्व करीब 0.037 g/cm3 है।[५८][५९] यह पारंपरिक CNT पाउडर से (~1.34 g/cm3) की तुलना में काफी कम है, शायद क्योंकि बाद वाले में धातु और रवाहीन कार्बन होते हैं।

सुपर-विकास पद्धति, मूल रूप से CVD का एक रूप है। इसलिए, SWNT, DWNTs और MWNTs वाली सामग्री का विकास करना और विकास की स्थिति की ट्यूनिंग द्वारा उनके अनुपात में परिवर्तन करना संभव है।[६०] उत्प्रेरक के पतलेपन द्वारा उनका अनुपात बदलता है। कई MWNTs को शामिल किया गया है ताकि ट्यूब का व्यास चौड़ा रहे। [५९]

लम्बवत संरेखित नैनोट्यूब फ़ॉरेस्ट, एक "ज़िपिंग प्रभाव" से उत्पन्न होते हैं जब उन्हें एक विलायक में डुबाया और सुखाया जाता है। ज़िपिंग प्रभाव, विलायक के सतही तनाव और कार्बन नैनोट्यूब के बीच वान डेर वाल्स बलों के कारण होता है। यह नैनोट्यूब को एक घनी सामग्री में संरेखित करता है, जिसे प्रक्रिया के दौरान कमजोर संपीड़न लगा कर विभिन्न आकार में बनाया जा सकता है जैसे चादरें और सलाखें. घनत्व, विकर्स की कठोरता को 70 गुना बढ़ा देता है और घनत्व 0.55 g/cm3 है। पैक किये हुए कार्बन नैनोट्यूब, 1 mm से अधिक लंबे होते हैं और 99.9% या अधिक की कार्बन शुद्धता होती है, उनमें नैनोट्यूब फ़ॉरेस्ट के वांछनीय संरेखण गुण बरकरार रहते हैं।[६१]

प्राकृतिक, आकस्मिक और नियंत्रित फ्लेम वातावरण

फुलरीन और कार्बन नैनोट्यूब आवश्यक रूप से उच्च तकनीकी प्रयोगशालाओं के उत्पाद नहीं हैं; उन्हें आमतौर पर साधारण फ्लेम की तरह लौकिक स्थानों पर गढ़ा जाता है,[६२] जलती मीथेन,[६३] ईथीलीन,[६४] और बेंजीन,[६५] द्वारा उत्पादित किया जाता है और उन्हें घरेलु और बाहरी, दोनों हवा की कालिख में पाया गया है।[६६] हालांकि, इन स्वाभाविक रूप से होने वाली किस्मों के आकार और गुणवत्ता में बहुत ही अनियमित हो सकती है क्योंकि जिस वातावरण में उन्हें उत्पादित किया जाता है वह अक्सर अत्यंत अनियंत्रित होता है। इस प्रकार, यद्यपि कुछ अनुप्रयोगों में उनका इस्तेमाल किया जा सकता है, एकरूपता के उच्च स्तर पर उनमें कमी हो सकती है जो अनुसंधान और उद्योग, दोनों की कई जरूरतों को पूरा के लिए आवश्यक है। हाल के प्रयासों ने नियंत्रित फ्लेम वातावरण में अपेक्षाकृत अधिक एकरूप कार्बन नैनोट्यूब के उत्पादन पर ध्यान केंद्रित किया है।[६७][६८][६९][७०] इस तरह के तरीके में, बड़े पैमाने पर, कम लागत वाले नैनोट्यूब संश्लेषण की संभावनाएं हैं, हालांकि उन्हें तेज़ी से बढ़ रहे बड़े पैमाने पर CVD उत्पादन के साथ मुकाबला करना होगा।

अनुप्रयोग संबंधित मुद्दे

कार्बन नैनोट्यूब के कई इलेक्ट्रॉनिक अनुप्रयोग महत्वपूर्ण रूप से, चुनिंदा रूप से अर्ध-परिचालक या धातु CNTs के उत्पादन की तकनीक पर निर्भर करते हैं, विशेषतः एक निश्चित काईरैलिटी वाले. अर्ध-परिचालक और धातु CNTs को अलग करने के कई तरीके ज्ञात हैं, लेकिन उनमें से ज्यादातर यथार्थवादी प्रौद्योगिकीय प्रक्रियाओं के लिए उपयुक्त नहीं हैं। अलग करने की एक व्यावहारिक विधि में हिमीकरण, विगलन और एगरोज़ जेल में सन्निहित SWNTs के संपीड़न के एक अनुक्रम का उपयोग होता है। इस प्रक्रिया के परिणामस्वरुप एक 70% धात्विक SWNTs युक्त घोल प्राप्त होता है और 95% से युक्त अर्ध-परिचालक SWNTs जेल छोड़ देता है। इस विधि द्वारा तरलीकृत घोल, विभिन्न रंग दिखाते हैं।[७१][७२] इसके अलावा, शुद्धता, कॉलम क्रोमैटोग्राफी विधि द्वारा, SWNT उच्च को अलग कर सकती है। उपज, अर्धचालक प्रकार के SWNT में 95% और धात्विक प्रकार के SWNT में 90% होती है।[७३]

अलगाव का एक विकल्प, धात्विक CNTs या अर्ध-परिचालक विकास का चयनात्मक विकास है। हाल ही में, एक नया CVD नुस्खा घोषित किया गया जिसमें इथेनॉल और मेथनॉल गैसों और क्वार्ट्ज सबट्रेट का एक संयोजन शामिल है जो क्षैतिज रूप से संरेखित 95-98% के अर्ध-परिचालक नैनोट्यूब में फलित होता है।[७४]

नैनोट्यूब को आमतौर पर चुंबकीय धातु (Fe, Co), जो इलेक्ट्रॉनिक (स्पिंट्रोनिक) उपकरणों के उत्पादन को आसान करता है, के नैनोकणों पर विकसित किया जाता है। एक चुंबकीय क्षेत्र द्वारा फील्ड-इफेक्ट ट्रांजिस्टर के माध्यम से करेंट के विशेष नियंत्रण को ऐसे एक एकल-ट्यूब नैनोसंरचना में प्रदर्शित किया गया है।[७५]

संभावित और मौजूदा अनुप्रयोग

साँचा:Main

यह भी देखें, पिछले मौजूदा अनुप्रयोगों के लिए: कार्बन नैनोट्यूब की समयरेखा

]

कार्बन नैनोट्यूब की शक्ति और लचीलापन, उन्हें अन्य नैनो पैमाने की संरचनाओं को नियंत्रित करने में संभावित रूप से उपयोगी बनाता है, जिससे संकेत मिलता है कि नैनोतकनीक इंजीनियरिंग में उनकी एक महत्वपूर्ण भूमिका होगी। एक एकल बहु-दीवार कार्बन नैनोट्यूब का सर्वोच्च तनन-सामर्थ्य 63 GPa नापा गया है।[१३] कार्बन नैनोट्यूब, 17वीं सदी के दमिश्क इस्पात में मिले, संभवतः उस इस्पात से बनी तलवारों की अद्भुत शक्ति में उसने योगदान किया।[७६][७७]

संरचनात्मक

कार्बन नैनोट्यूब के बेहतरीन यांत्रिक गुणों के कारण, कई संरचनाओं को प्रस्तावित किया गया है, जिसमें रोज़मर्रा की वस्तुएं जैसे कपड़े और स्पोर्ट्स गिअर से लेकर युद्ध जैकेट और स्पेस लिफ्ट शामिल हैं।[७८] हालांकि, कार्बन नैनोट्यूब प्रौद्योगिकी को परिष्कृत करने में स्पेस लिफ्ट को आगे प्रयासों की आवश्यकता है, चूंकि कार्बन नैनोट्यूब के व्यावहारिक तनन-सामर्थ्य को अभी भी बहुत सुधारा जा सकता है।[]

भविष्य के लिए, शानदार सफलताएं पहले ही प्राप्त की जा चुकी हैं। नैनोटेक संस्थान में रे एच. बाऊमन के नेतृत्व में प्रमुख कार्य यह दिखाते हैं कि एकल और बहु-दीवार नैनोट्यूब, इतनी कठोर वस्तुओं का उत्पादन कर सकते हैं जिनकी मिसाल मानव निर्मित और प्राकृतिक दुनिया में मौजूद नहीं होगी। [७९][८०]

विद्युत् सर्किट में

नैनोट्यूब आधारित ट्रांजिस्टर बनाए गए हैं जो घरेलु तापमान पर काम करते हैं और जो एक एकल इलेक्ट्रॉन के प्रयोग से डिजिटल परिवर्तन करने में सक्षम हैं।[८१] नैनोट्यूब की प्राप्ति में एक प्रमुख बाधा है, बड़े पैमाने पर उत्पादन के लिए तकनीक का अभाव. हालांकि, 2001 में IBM शोधकर्ताओं ने बड़ी तादाद में नैनोट्यूब ट्रांजिस्टरों के निर्माण के तरीके का प्रदर्शन किया, बहुत कुछ सिलिकॉन ट्रांजिस्टर की तरह. उनकी प्रक्रिया "रचनात्मक विध्वंस" कहलाती है जिसमें वेफर पर दोषपूर्ण नैनोट्यूब का स्वत: विनाश भी शामिल है।[८२]

IBM प्रक्रिया को आगे विकसित किया गया और दस बीलियन सही ढंग से संरेखित नैनोट्यूब जंक्शनों वाले एकल चिप वेफर्स बनाए गए। इसके अलावा, यह भी दर्शाया गया कि गलत तरीके से संरेखित नैनोट्यूब को, मानक फोटोलिथोग्राफी उपकरण का उपयोग करते हुए स्वतः हटाया जा सकता है।[८३]

पहला नैनोट्यूब इंटिग्रेटेड मेमोरी सर्किट 2004 में बनाया गया था। नैनोट्यूब की चालकता का विनियमन प्रमुख चुनौतियों में से एक रहा है। सतह के सूक्ष्म लक्षणों के आधार पर एक नैनोट्यूब एक सादे परिचालक के रूप में या एक अर्धपरिचालक के रूप में कार्य कर सकता है। गैर अर्धपरिचालक ट्यूब को हटाने के लिए एक पूर्ण स्वचालित विधि विकसित की गई है।[८४]

कार्बन नैनोट्यूब ट्रांजिस्टर बनाने का एक और तरीका है उनके यादृच्छिक नेटवर्क का इस्तेमाल करना। ऐसा करके एक व्यक्ति उनकी सारी विद्युत् भिन्नताओं का औसतिकरण करता है और वह वेफर स्तर पर बड़े पैमाने में उपकरणों का उत्पादन कर सकता है।[८५] इस तरीके को सबसे पहले नैनोमिक्स इंक. द्वारा पेटेंट करवाया गया।[८६] (मूल आवेदन की तिथि जून 2002[८७]) यह सबसे पहले अमेरिकी नौसेना अनुसंधान प्रयोगशाला द्वारा शैक्षणिक साहित्य में 2003 में स्वतंत्र शोध कार्य के माध्यम से प्रकाशित हुआ। इस विधि ने नैनोमिक्स को एक लचीले और पारदर्शी सबस्ट्रेट पर पहला ट्रांजिस्टर बनाने में भी सक्षम किया।[८८][८९]

कार्बन नैनोट्यूब के बड़े ढांचे को इलेक्ट्रॉनिक सर्किट के तापीय प्रबंधन के लिए इस्तेमाल किया जा सकता है। लगभग 1 mm मोटी एक कार्बन नैनोट्यूब परत का उपयोग एक विशेष सामग्री के रूप में शीतलक बनाने के लिए किया गया, इस सामग्री का घनत्व बहुत कम है, इसी तरह की तांबे की संरचना से ~ 20 गुना कम वजन, जबकि दोनों सामग्रीयों के लिए शीतलक विशेषताएं समान हैं।[९०]

कागज बैटरी के रूप में

कागज बैटरी एक बैटरी है जिसे सेलूलोज़, जो संरेखित कार्बन नैनोट्यूब से भरा है, की कागजनुमा पतली शीट का उपयोग करने के लिए अभिकल्पित किया गया है (जो अन्य चीज़ों के अलावा नियमित कागज का प्रमुख घटक है).[९१] नैनोट्यूब, इलेक्ट्रोड के रूप में कार्य करते हैं; भंडारण उपकरणों को बिजली संचालित करने की अनुमति देते हैं। यह बैटरी, जो एक-लिथियम आयन बैटरी और एक सुपरसंधारित्र, दोनों के रूप में काम करती है, एक पारंपरिक बैटरी की तुलना में लंबे समय तक, निरंतर बिजली उत्पादन और साथ ही साथ एक सुपरसंधारित्र की उच्च ऊर्जा का त्वरित विस्फोट प्रदान कर सकती है - और जबकि एक पारंपरिक बैटरी में कई अलग घटक शामिल होते हैं, एक कागज बैटरी, बैटरी के सभी घटकों को एक एकल ढांचे में एकीकृत करती है और इसे अधिक ऊर्जा कुशल बनाती है।

औषधि वितरण के लिए एक पोत के रूप में

नैनोट्यूब के बहुमुखी ढांचे का प्रयोग शरीर के अन्दर और आसपास स्थानीयकृत दवा वितरण के लिए किया जा सकता है। यह कैंसर की कोशिकाओं के उपचार में विशेष रूप से उपयोगी है।[९२][९३] वर्तमान में, शरीर के विशिष्ट अंगों को लक्षित करने में अपनी कमज़ोर क्षमता की वजह से रसायन-चिकित्सा, अक्सर स्वस्थ और साथ ही साथ कैंसर कोशिकाओं को नष्ट कर देती है। नैनोट्यूब को किसी दवा से भरा जा सकता है और विशिष्ट क्षेत्रों में पहुंचाया जा सकता है जहां एक रासायनिक ट्रिगर, नैनोट्यूब से दावा को निकाल सकता है। नैनोट्यूब को सील करने के लिए डाई और एक पॉलिमर कैप का उपयोग करने वाले एक परीक्षण को साहित्य में सूचित किया गया है।[९४]

मौजूदा अनुप्रयोग

साँचा:Unreferenced section नैनोट्यूब के वर्तमान उपयोग और अनुप्रयोग, ज्यादातर थोक नैनोट्यूब के उपयोग तक सीमित हैं, जो नैनोट्यूब के असंगठित टुकड़े की राशि है। थोक नैनोट्यूब सामग्री, एक व्यक्तिगत ट्यूब के समान लचीली शक्ति प्राप्त नहीं कर सकते, लेकिन ऐसे स्वरूप, फिर भी कई अनुप्रयोगों के लिए पर्याप्त शक्ति पैदा कर सकते हैं। थोक कार्बन नैनोट्यूब का पहले ही, पॉलिमर में, थोक उत्पाद के यांत्रिक, तापीय और विद्युत गुणों में सुधार के लिए संमिश्रित तंतुओं के रूप में इस्तेमाल किया जा चुका है।

ईस्टन-बेल स्पोर्ट्स, इंक, ज़िवेक्स के साथ साझेदारी में हैं और अपने कई साइकिल घटकों में CNT प्रौद्योगिकी का उपयोग करते हैं - जिसमें शामिल है फ्लैट और राइज़र हैंडलबार, क्रैंक, फोर्क, सीटपोस्ट, स्टेम और एरो बार.

सौर सेल

न्यू जर्सी प्रौद्योगिकी संस्थान में विकसित सौर कोशिकाएं, सांप सदृश ढांचे के निर्माण के लिए कार्बन नैनोट्यूब और कार्बन बकिबॉल (फुलरीन के रूप में ज्ञात) के एक मिश्रण द्वारा गठित, कार्बन नैनोट्यूब काम्प्लेक्स का उपयोग करती हैं। बकिबॉल, इलेक्ट्रॉनों को फंसाते हैं, हालांकि वे इलेक्ट्रॉनों को प्रवाहित नहीं कर सकते. पॉलीमर को उत्तेजित करने के लिए सूरज की रोशनी जोड़ें और बकिबॉल इलेक्ट्रॉनों को पकड़ लेगा। तांबे के तारों की तरह बर्ताव कर रहे नैनोट्यूब, तब इलेक्ट्रॉन या विद्युत् प्रवाह को बनाने में सक्षम होंगे। [९५]

अल्ट्रासंधारित्र

विद्युतचुंबकीय और इलेक्ट्रॉनिक प्रणालियों के लिए MIT प्रयोगशाला, अल्ट्रासंधारित्र में सुधार करने के लिए नैनोट्यूब का उपयोग करती है। पारंपरिक अल्ट्रासंधारित्र में प्रयुक्त सक्रिय लकड़ी के कोयले में कई विभिन्न आकार के छोटे खोखले छेद होते हैं, जो विद्युत चार्ज को संग्रहित करने के लिए एक साथ एक बड़ी सतह का निर्माण करते हैं। चूंकि चार्ज को प्राथमिक चार्ज, यानी इलेक्ट्रॉनों में क्वान्टाइज़ किया जाता है और ऐसे प्रत्येक प्राथमिक चार्ज को एक न्यूनतम जगह की आवश्यकता होती है, इलेक्ट्रोड सतह का एक महत्वपूर्ण अंश, भंडारण के लिए उपलब्ध नहीं होता, क्योंकि खोखले स्थान चार्ज की आवश्यकताओं के साथ संगत नहीं हैं। एक नैनोट्यूब इलेक्ट्रोड के साथ रिक्त स्थानों को आकार में बनाया जा सकता है - कुछ बहुत बड़े या बहुत छोटे - और परिणामस्वरूप, क्षमता में काफी वृद्धि की जानी चाहिए। [९६]

अन्य अनुप्रयोग

कार्बन नैनोट्यूब को नैनोइलेक्ट्रोमेकेनिकल सिस्टम में लागू किया गया है, जिसमें यांत्रिक स्मृति तत्व (नेन्टेरो इंक द्वारा विकसित NRAM) और नैनो पैमाने के इलेक्ट्रिक मोटर्स शामिल है (देखें नैनोमोटर).

मई 2005 में, नैनोमिक्स इंक ने बाजार पर एक हाइड्रोजन सेंसर रखा जो एक सिलिकॉन प्लेटफोर्म पर कार्बन नैनोट्यूब को एकीकृत करता है। तब से नैनोमिक्स, कार्बन डाइऑक्साइड, नाइट्रस ऑक्साइड, ग्लूकोज, DNA खोज के क्षेत्र में ऐसे कई सेंसर अनुप्रयोगों को पेटेंट करवाता रहा है।

फ्रैंकलिन, मैसाचुसेट्स का एइकोस इंक और सिलिकॉन वैली, कैलिफोर्निया, का उनिडिम इंक, ईण्डीयम टिन ऑक्साइड (ITO) को प्रतिस्थापित करने के लिए कार्बन नैनोट्यूब के पारदर्शी, विद्युत प्रवाहकीय फ़िल्में विकसित कर रहे हैं। कार्बन नैनोट्यूब फ़िल्में, ITO फिल्मों की तुलना में यांत्रिक रूप से वस्तुतः अधिक मजबूत हैं, जो उन्हें उच्च विश्वसनीयता वाले टचस्क्रीन और लचीले डिस्प्ले के लिए आदर्श बनाता है। ITO को प्रतिस्थापित करने के लिए इन फिल्मों के उत्पादन को सक्षम बनाने में कार्बन नैनोट्यूब की मुद्रण योग्य जल-आधारित स्याही इच्छित हैं।[९७] कंप्यूटर, सेल फोन, PDA और ATM के डिस्प्ले के इस्तेमाल के लिए नैनोट्यूब फ़िल्में संभावनाएं प्रदर्शित करती हैं।

नैनोरेडियो, एक एकल नैनोट्यूब वाला रेडियो रिसीवर, को 2007 में प्रदर्शित किया गया। 2008 में यह दिखाया गया कि नैनोट्यूब का एक शीट, यदि एक वैकल्पिक विद्युत् लगाया जाए तो लाउडस्पीकर के रूप में काम कर सकता है। ध्वनि की उत्पत्ति कंपन से नहीं बल्कि थर्मोअकुस्टिक के माध्यम से होती है।[९८]

कार्बन नैनोट्यूब की उच्च यांत्रिक शक्ति के कारण, उनसे चाकू-रोधी और बुलेटप्रूफ कपड़े बनाने के लिए अनुसंधान किया जा रहा है। नैनोट्यूब, प्रभावी ढंग से गोली को शरीर में प्रवेश करने से रोकेंगे, हालांकि गोली की गतिज ऊर्जा से हड्डियों के टूटने और आंतरिक रक्तस्राव की संभावना रहेगी.[९९]

कार्बन नैनोट्यूब से बने एक फ्लाईव्हील को, एक निर्वात में एक अस्थायी चुंबकीय धुरी पर अत्यधिक उच्च वेग से घुमाया जा सकता है और संभवतः एक पारंपरिक जीवाश्म ईंधन की बराबरी वाले घनत्व पर ऊर्जा संग्रहित कर सकता है। चूंकि फ्लाईव्हील में बिजली के रूप में बहुत कुशलता से ऊर्जा जोड़ी और घटाई जा सकती है, इससे बिजली भंडारण का एक तरीका मिल सकता है, जिससे विद्युत ग्रिड अधिक कुशल और चर बिजली आपूर्तिकर्ता (जैसे पवन टर्बाइन) बन सकते हैं और ऊर्जा ज़रूरतों को पूरा करने में और अधिक उपयोगी हो सकते हैं। इस बात की व्यावहारिकता विशाल, अखंड नैनोट्यूब संरचनाओं के निर्माण की लागत और तनाव में उनकी असफलता दर पर काफी निर्भर करती है।

कार्बन नैनोट्यूब द्वारा रियोलोजिकल गुण भी बहुत प्रभावी ढंग से दिखाया जा सकता है।

नाइट्रोजन-युक्त कार्बन नैनोट्यूब प्लैटिनम उत्प्रेरक की जगह ले सकते हैं जिनका प्रयोग ईंधन सेल में ऑक्सीजन को कम करने में होता है। ऊर्ध्व संरेखित नैनोट्यूब का एक फ़ॉरेस्ट, क्षारीय घोल में ऑक्सीजन को प्लैटिनम की तुलना में अधिक प्रभावी ढंग से कम सकता है, जो 1960 के दशक के बाद से ऐसे अनुप्रयोगों में प्रयोग किया जाता रहा है। नैनोट्यूब से, कार्बन मोनोआक्साइड विषाक्तता के अधीन ना होने का अतिरिक्त लाभ है।[१००]

खोज

साँचा:Seealso 2006 में कार्बन पत्रिका में मार्क मोंथिअक्स और व्लादिमीर कुज्नेत्सोव द्वारा लिखे संपादकीय ने कार्बन नैनोट्यूब के रोचक और अक्सर गलत रूप से पेश उत्पत्ति की व्याख्या की। शैक्षिक और लोकप्रिय साहित्य का एक बड़ा हिस्सा, अभ्रकीय कार्बन से निर्मित खोखले, नैनोमीटर आकार के ट्यूब का श्रेय 1991 में NEC के सुमिओ लिजिमा को देता है।[१०१]

1952 में एल.वी. रादुशकेविच और वी. एम. लुक्यानोविच ने सोवियत जर्नल ऑफ़ फिज़िकल केमिस्ट्री में कार्बन से बने 50 नैनोमीटर व्यास के ट्यूबों के स्पष्ट चित्र प्रकाशित किये। [१०२] मोटे तौर पर इस खोज पर किसी का ध्यान नहीं गया, चूंकि यह लेख रूसी भाषा में प्रकाशित किया गया था और पश्चिमी वैज्ञानिकों की सोवियत प्रेस में पहुंच शीत युद्ध के दौरान सीमित ही थी। संभावना है कि कार्बन नैनोट्यूब इस तिथि से पहले उत्पादित किए गए थे, लेकिन संचरण इलेक्ट्रॉन माइक्रोस्कोप (TEM) के आविष्कार ने इन संरचनाओं को प्रत्यक्ष देखने की अनुमति दी।

1991 से पहले कार्बन नैनोट्यूब का उत्पादन किया गया और विभिन्न प्रकार की परिस्थितियों के तहत इसकी निगरानी की गई। ओबेरलिन, इंडो और कोयामा द्वारा 1976 में प्रकाशित पेपर ने एक भाप-विकसित तकनीक का उपयोग करके स्पष्ट रूप से नैनोमीटर पैमाने के व्यास वाले खोखले कार्बन फाइबर को दिखाया.[१०३] इसके अतिरिक्त, लेखकों ने ग्राफीन की एक एकल-दीवार से बने एक नैनोट्यूब की TEM छवि को प्रदर्शित किया। बाद में, इंडो ने इस छवि को एकल-दीवार नैनोट्यूब के रूप में उद्धृत किया।[१०४]

1979 में जॉन अब्राहमसन ने पेन्सिलवेनिया स्टेट यूनिवर्सिटी में कार्बन के 14वें द्विवार्षिक सम्मेलन में कार्बन नैनोट्यूब का सबूत पेश किया। सम्मेलन के इस पेपर में कार्बन नैनोट्यूब को कार्बन फाइबर के रूप में वर्णित किया गया जिसे आर्क डिस्चार्ज के दौरान कार्बन एनोड्स पर तैयार किया गया। इन तंतुओं के लक्षणों को प्रस्तुत किया गया और साथ ही साथ कम दबाव पर एक नाइट्रोजन वातावरण में उनके विकास के लिए परिकल्पना दी गई।[१०५]

1981 में सोवियत वैज्ञानिकों के एक समूह ने, मोनोआक्साइड के थेर्मोकैटालिटिकल अनुपातहीनता द्वारा उत्पादित कार्बन नैनोकण के रासायनिक और संरचनात्मक लक्षण वर्णन के परिणामों को प्रकाशित किया। TEM छवियों और XRD पैटर्न का उपयोग करके, लेखकों ने सुझाव दिया कि उनके "कार्बन बहु-परतीय ट्यूबलर क्रिस्टल" का गठन ग्राफीन परतों को सिलेंडर के रूप में लपेटकर किया गया। उनका सोचना था कि एक सिलेंडर के रूप में ग्राफीन परतों के लपेटने द्वारा ग्राफीन हेक्सागोनल जाल के कई विभिन्न आयोजन हो सकते हैं। उन्होंने ऐसी व्यवस्था की दो संभावनाएं व्यक्त की: गोलाकार व्यवस्था (आर्मचेयर नैनोट्यूब) और एक कुंडलीनुमा, पेचदार व्यवस्था (काइरल ट्यूब).[१०६]

1987 में हाईपीरियन कटैलिसीस के हावर्ड जी. टेनेट को "बेलनाकार असतत कार्बन फिब्रिल्स" के उत्पादन के लिए एक अमेरिकी पेटेंट प्राप्त हुआ। यह फिब्रिल करीब 3.5 और करीब 70 नैनोमीटर के बीच एक स्थिर व्यास वाला..., लंबाई व्यास से 102 गुना और उसका बाहरी क्षेत्र, कार्बन परमाणुओं का अनिवार्य रूप से निरंतर परतों वाला और इसका भीतरी कोर भिन्न था।..."[१०७]

आर्क से जली अभ्रक छड़ से बने अघुलनशील पदार्थ में, लिजिमा की 1991 में बहु-दीवार कार्बन नैनोट्यूब की खोज[१०८] ने और मिन्टमायर, डनलप और व्हाइट की स्वतंत्र भविष्यवाणी कि यदि एकल-दीवार कार्बन नैनोट्यूब को बनाया जा सका, तो वे उल्लेखनीय संवाहन गुणों का प्रदर्शन करेंगे[१०९], ने उस प्रारंभिक चर्चा की उत्पत्ति में मदद की जो अब कार्बन नैनोट्यूब के साथ जुड़ा हुआ है। IBM के बेथुन और एकल-दीवार कार्बन नैनोट्यूब के NEC के लिजिमा की स्वतंत्र खोजों और एक आर्क डिस्चार्ज में संक्रमण धातु उत्प्रेरक जोड़कर विशेष रूप से उनके उत्पादन के तरीकों के बाद नैनोट्यूब अनुसंधान बहुत तेज़ी से बढ़ा. आर्क डिस्चार्ज तकनीक को प्रारंभिक स्तर पर प्रसिद्ध बकमिन्स्टर फुलरीन उत्पादन के लिए अच्छी तरह जाना जाता था,[११०] और ऐसा प्रतीत हुआ कि इन परिणामों ने फुलरीन से संबंधित आकस्मिक खोजों का विस्तार किया। मास स्पेक्ट्रोमेट्री में फुलरीन का मूल अवलोकन प्रत्याशित नहीं था,[१११] और क्रेटश्मर और हफमन द्वारा थोक-उत्पादन तकनीक का प्रयोग कई वर्षों तक किया गया यह अनुभव करने से पहले तक कि यह फुलरीन का उत्पादन करती है।[११०]

नैनोट्यूब की खोज एक विवादास्पद मुद्दा बनी हुई है, खासकर इसलिए क्योंकि शोध में शामिल कई वैज्ञानिक नोबेल पुरस्कार के संभावित उम्मीदवार हो सकते हैं। कई लोगों का मानना है कि 1991 में लिजिमा की रिपोर्ट विशेष महत्व की है क्योंकि इसने कार्बन नैनोट्यूब को समग्र रूप से वैज्ञानिक समुदाय की जानकारी में पहुंचा दिया। कार्बन नैनोट्यूब की खोज के इतिहास की समीक्षा के लिए सन्दर्भ देखें.[१०१]

नैनोट्यूब खोज के मामले के समान ही एक प्रश्न यह है कि सबसे पतला संभव कार्बन नैनोट्यूब क्या है। संभावित उम्मीदवार हैं: 2000 में सूचित करीब 0.40 nm व्यास के नैनोट्यूब; लेकिन वे स्वतंत्र खड़े नहीं हैं, बल्कि जिओलाइट क्रिस्टल में संलग्न हैं[११२] या बहु-दीवार नैनोट्यूब के सबसे भीतरी खोल हैं।[११३] बाद में, केवल 0.3 nm व्यास वाले MWNTs के भीतरी खोल की खबर दी गई।[११४] सितम्बर 2003 तक, सबसे पतला मुक्त-खड़ा नैनोट्यूब, 0.43 nm व्यास का है।[११५]

इन्हें भी देखें

साँचा:Colbegin

साँचा:Colend

मुफ्त डाउनलोड समीक्षाएं

किताबें

सन्दर्भ

साँचा:Reflist

बाहरी कड़ियाँ

साँचा:Commons

साँचा:Allotropes of carbon

  1. साँचा:Cite journal
  2. Saberi A, Baltatu MS, Vizureanu P. The Effectiveness Mechanisms of Carbon Nanotubes (CNTs) as Reinforcements for Magnesium-Based Composites for Biomedical Applications: A Review. Nanomaterials. 2024; 14(9):756. https://doi.org/10.3390/nano14090756 साँचा:Open access
  3. साँचा:Cite journal
  4. साँचा:Cite journal
  5. साँचा:Cite journal
  6. ६.० ६.१ ६.२ ६.३ ६.४ साँचा:Cite journal
  7. साँचा:Cite web
  8. साँचा:Cite web
  9. साँचा:Cite journal
  10. १०.० १०.१ साँचा:Cite journal
  11. साँचा:Cite journal
  12. साँचा:Cite web
  13. १३.० १३.१ १३.२ साँचा:Cite journal
  14. साँचा:Cite web
  15. साँचा:Cite web
  16. साँचा:Cite journal
  17. साँचा:Cite journal
  18. साँचा:Cite journal
  19. साँचा:Cite journal
  20. साँचा:Cite journal
  21. आर. एस. रुओफ़, एट अल. "रैडिअल डीफोरमेशन ऑफ़ कार्बन नैनोट्यूब बाई वां डेर वाल्स फोर्सेस" Nature 364, 514 (1993) साँचा:Webarchive
  22. Palaci, एट अल. "रेडियल इलास्टिसिटी ऑफ़ मल्टीवॉल्ड कार्बन नैनोट्यूब". Phys. साँचा:WebarchiveRev. Lett. साँचा:Webarchive94, 175502 (2005) साँचा:Webarchive
  23. M.-F. Yu, एट अल. "इन्वेस्टीगेशन ऑफ़ रैडिअल ऑफ़ इंडिविजुअल कार्बन नैनोट्यूब अंडर कंट्रोल्ड इंडेंटेशन फ़ोर्स". Phys. साँचा:WebarchiveRev. Lett. साँचा:Webarchive85, 1456-1459 (2000) साँचा:Webarchive
  24. साँचा:Cite journal
  25. साँचा:Cite web
  26. साँचा:Cite journal
  27. साँचा:Cite journal
  28. साँचा:Cite journal
  29. साँचा:Cite journal
  30. कार्बन आधारित चुंबकत्व: धातु मुक्त कार्बन आधारित यौगिक और पदार्थ के चुंबकत्व का अवलोकन, तातियाना मकारोवा और फर्नांडो पालकियो द्वारा संपादित (Elsevier 2006)
  31. साँचा:Cite journal
  32. ३२.० ३२.१ साँचा:Cite journal
  33. ३३.० ३३.१ साँचा:Cite journal
  34. ज़ुम्वाल्दे, राल्फ और लौरा होड्सन (मार्च 2009). "Approaches to Safe Nanotechnology: Managing the Health and Safety Concerns Associated with Engineered Nanomaterials" साँचा:Webarchive राष्ट्रीय व्यावसायिक सुरक्षा और स्वास्थ्य संस्थान. NIOSH (DHHS) 2009-125 प्रकाशन.
  35. ३५.० ३५.१ साँचा:Cite journal
  36. ३६.० ३६.१ ३६.२ साँचा:Cite journal
  37. साँचा:Cite web
  38. साँचा:Cite journal
  39. साँचा:Cite journal
  40. साँचा:Cite journal
  41. साँचा:Cite journal
  42. साँचा:Cite journal
  43. साँचा:Cite journal
  44. साँचा:Cite news
  45. एन इनामी एट अल. "सिंथेसिस-कंडीशन डिपेंडेंस ऑफ़ कार्बन नैनोट्यूब ग्रोथ बाई एल्कोहोल केटालिटिक केमिकल वेपर डिपोसिशन मेथड" Sci. Technol. Adv. Mater. 8 (2007) 292 free download साँचा:Webarchive
  46. साँचा:Cite journal
  47. साँचा:Cite journal
  48. साँचा:Cite journal
  49. साँचा:Cite web
  50. साँचा:Cite journal
  51. साँचा:Cite news
  52. साँचा:Cite web
  53. साँचा:Cite web
  54. साँचा:Cite journal
  55. साँचा:Cite journal
  56. साँचा:Cite journal
  57. साँचा:Cite web
  58. साँचा:Cite web
  59. ५९.० ५९.१ साँचा:Cite web
  60. साँचा:Cite journal
  61. साँचा:Cite journal
  62. साँचा:Cite journal
  63. साँचा:Cite journal
  64. साँचा:Cite journal
  65. साँचा:Cite journal
  66. साँचा:Cite journal
  67. साँचा:Cite journal
  68. साँचा:Cite journal
  69. साँचा:Cite journal
  70. साँचा:Cite journal
  71. साँचा:Cite journal
  72. साँचा:Cite web
  73. साँचा:Cite journal
  74. साँचा:Cite journal
  75. साँचा:Cite journal
  76. साँचा:Cite journal
  77. साँचा:Cite journal
  78. साँचा:Cite book
  79. साँचा:Cite journal
  80. साँचा:Cite journal
  81. साँचा:Cite journal
  82. साँचा:Cite journal
  83. साँचा:Cite journal
  84. साँचा:Cite journal
  85. साँचा:Cite journal
  86. साँचा:Cite web
  87. साँचा:Cite journal
  88. साँचा:Cite journal
  89. साँचा:Cite journal
  90. साँचा:Cite journal
  91. साँचा:Cite news
  92. साँचा:Cite journal
  93. साँचा:Cite journal
  94. साँचा:Cite journal
  95. साँचा:Cite news
  96. MIT LEES on Batteries. साँचा:Webarchive MIT प्रेस विज्ञप्ति, 2006.
  97. साँचा:Cite journal
  98. Hot nanotube sheets produce music on demand साँचा:Webarchive न्यू साइंटिस्ट न्यूज़ 31 अक्टूबर 2008
  99. साँचा:Cite journal
  100. केमिकल एंड इंजीनियरिंग न्यूज़, 9 फ़रवरी 2009, "नैनोट्यूब उत्प्रेरक", p. 7
  101. १०१.० १०१.१ साँचा:Cite journal
  102. साँचा:Cite journal
  103. साँचा:Cite journal
  104. साँचा:Cite web
  105. साँचा:Cite journal
  106. Izvestiya Akademii Nauk SSSR, Metals. 1982, #3, p.12-17 [रूसी में]
  107. साँचा:Ref patent
  108. साँचा:Cite journal
  109. साँचा:Cite journal
  110. ११०.० ११०.१ साँचा:Cite journal
  111. साँचा:Cite journal
  112. साँचा:Cite journal
  113. साँचा:Cite journal
  114. साँचा:Cite journal
  115. साँचा:Cite journal