त्रिकोणमितीय प्रतिस्थापन

testwiki से
नेविगेशन पर जाएँ खोज पर जाएँ

गणित के सन्दर्भ में, त्रिकोणमितीय प्रतिस्थापन (Trigonometric substitution) का अर्थ है, गैर-त्रिकोणमितीय फलनों के स्थान पर त्रिकोणमितीय फलनों को स्थापित करना। इनके उपयोग से कुछ समाकल सरल हो जाते हैं।[][]

प्रतिस्थापन 1. यदि समाकल्य (integrand) में a2 − x2 हो तो ,

x=asinθ

रखें और यह सर्वसमिका प्रयोग करें-

1sin2θ=cos2θ.

प्रतिस्थापन 2. If the integrand contains a2 + x2, let

x=atanθ

and use the identity

1+tan2θ=sec2θ.

प्रतिस्थापन 3. If the integrand contains x2 − a2, let

x=asecθ

and use the identity

sec2θ1=tan2θ.

उदाहरण

Integrals containing a2x2

In the integral

dxa2x2

we may use

x=asin(θ),dx=acos(θ)dθ,θ=arcsin(xa)
dxa2x2=acos(θ)dθa2a2sin2(θ)=acos(θ)dθa2(1sin2(θ))=acos(θ)dθa2cos2(θ)=dθ=θ+C=arcsin(xa)+C

Note that the above step requires that a > 0 and cos(θ) > 0; we can choose the a to be the positive square root of a2; and we impose the restriction on θ to be −π/2 < θ < π/2 by using the arcsin function.

For a definite integral, one must figure out how the bounds of integration change. For example, as x goes from 0 to a/2, then sin(θ) goes from 0 to 1/2, so θ goes from 0 to π/6. Then we have

0a2dxa2x2=0π6dθ=π6.

Some care is needed when picking the bounds. The integration above requires that −π/2 < θ < π/2, so θ going from 0 to π/6 is the only choice. If we had missed this restriction, we might have picked θ to go from π to 5π/6, which would give us the negative of the result.

Integrals containing a2 + x2

In the integral

dxa2+x2

we may write

x=atan(θ),dx=asec2(θ)dθ,θ=arctan(xa)

so that the integral becomes

dxa2+x2=asec2(θ)dθa2+a2tan2(θ)=asec2(θ)dθa2(1+tan2(θ))=asec2(θ)dθa2sec2(θ)=dθa=θa+C=1aarctan(xa)+C

(provided a ≠ 0).

सन्दर्भ

साँचा:टिप्पणीसूची

इन्हें भी देखें