रैखिक क्रमादेशन

testwiki से
नेविगेशन पर जाएँ खोज पर जाएँ
लिओनिद कान्तोरोविच

गणित में रैखिक प्रोग्रामन (linear programming) इष्टतमीकरण (ऑप्टिमाइजेशन) की एक तकनीक है जिसमें लक्ष्य-फलन भी रैखीय होता है तथा शर्तें (समिकाएं/असमिकाएँ) भी रैखिक होतीं हैं। किन्तु इसका कम्प्यूटर प्रोग्रामन से कोई सम्बन्ध नहीं है।

इतिहास

सन १९३९ में लिओनिद कान्तोरोविच (Leonid Kantorovich) ने प्रथम रैखिक प्रोग्रामन समस्या निर्मित की थी। उन्होने इस समस्या के हल की विधि भी प्रस्तुत की थी। उन्होने इसे द्वितीय विश्वयुद्ध के समय विकसित किया था जिसका उद्देश्य युद्ध में सेना के खर्चे को कम करना था।

मानक स्वरूप

मानक रूप (Standard form), रैखिक क्रमादेशन समस्या के वर्णन का सबसे अच्छा तरीका है। रैखिक प्रोग्रामिंग की समस्या के तीन भाग होते हैं।

  • एक रैखिक फलन का अधिकतमीकरण (linear function to be maximized)
जैसे f(x1,x2)=c1x1+c2x2
  • समस्या की शर्तें (Problem constraints), जो कुछ इस प्रकार के होते हैं-
जैसे
a11x1+a12x2b1a21x1+a22x2b2a31x1+a32x2b3
  • वे चर जिनका मान केवल धनात्मक हो सकता है (Non-negative variables)
जैसे.
x10x20

रैखिक क्रमादेशन की समस्या को प्रायः मैट्रिक्स के रूप में अभिव्यक्त किया जाता है, तब समस्या का रूप यह हो जाता है-

max{𝐜T𝐱|A𝐱𝐛𝐱0}

अन्य प्रकार की रैखिक क्रमानुदेशन समस्याएं (जैसे न्यूनीकरण समस्या, दूसरे प्रकार की शर्तें, ऋणात्मक चर मानों वाली समस्याएँ आदि) हमेशा उपरोक्त मानक रूप में बदलकर लिखी सकतीं हैं।

उदाहरण

उदाहरण में दी गयी समस्या की व्याख्या

मना दो चरों x1 तथा x2 के रैखिक फलन G का अधिकतम मान निकालना है-

G(x1,x2)=300x1+500x2.

किन्तु, उपरोक्त फलन का अधिकतम मान निकालते समय निम्नलिखित शर्तों का पालन भी होना चाहिये-

x1+2x2170x1+x21503x2180

इन शर्तों के साथ यह भी ध्यान रखना है कि दोनों चर ऋणात्मक मान नहीं ले सकते, अर्थात् x1,x20

इस समस्या का हल सामने के ग्राफ से हो जाता है। ग्राफ में नीली रेखा में बने बहुभुज के किसी शीर्ष पर ही उपरोक्त फलन G का मान अधिकतम होगा। एक-एक करके जाँचने पर पता चलता है कि x1=130 तथा x2=20 रखने पर G का मान अधिकतम (49000) प्राप्त होता है।

इन्हें भी देखें

बाहरी कड़ियाँ