कलन
साँचा:कलन कलन (Calculus) गणित का प्रमुख क्षेत्र है जिसमें राशियों के परिवर्तन का गणितीय अध्ययन किया जाता है। इसकी दो मुख्य शाखाएँ हैं- अवकल गणित (डिफरेंशियल कैल्कुलस) तथा समाकलन गणित (इटीग्रल कैलकुलस)। कैलकुलस के ये दोनों शाखाएँ कलन के मूलभूत प्रमेय द्वारा परस्पर सम्बन्धित हैं। वर्तमान समय में विज्ञान, इंजीनियरी, अर्थशास्त्र आदि के क्षेत्र में कैल्कुलस का उपयोग किया जाता है।
बाबुल, मिस्र, यूनान, चीन, इस्लामी दुनिया और भारत में कलन के कई विचार विकसित किए गए थे।[१][२][३][४] किन्तु परम्परागत रूप से यही मान्यता है कि कैलकुलस का प्रयोग 17वीं शताब्दी के उत्तरार्ध में आरंभ हुआ तथा आइजक न्यूटन तथा लैब्नीज इसके जनक थे।
समाकलन

समाकलन(Integral Calculus) यह एक विशेष प्रकार की योग क्रिया है जिसमें अति-सूक्ष्म मान वाली (किन्तु गिनती में अत्यधिक, अनन्त) संख्याओं को जोड़ा जाता है। किसी फलन के ग्राफ द्वारा बने वक्र तथा x-अक्ष के बीच का क्षेत्रफल निकालने के लिये समाकलन का प्रयोग करना पड़ता है।
अवकलन
अवकलन(Differential Calculus) किसी एक राशि का किसी अन्य राशि के सापेक्ष तात्कालिक बदलाव की दर का अध्ययन करता है। इस दर को 'अवकलज' (en:Derivative) कहते हैं।
किसी फलन के किसी चर राशि के साथ बढ़ने की दर को मापता है। जैसे यदि कोई फलन y किसी चर राशि x पर निर्भर है और x का मान x1 से x2 करने पर y का मान y1 से y2 हो जाता है तो (y2 - y1)/(x2 - x1) को y का x के सन्दर्भ में अवकलज कहते हैं। इसे dy/dx से निरूपित किया जाता है। ध्यान रहे कि परिवर्तन (x2 - x1) सूक्ष्म से सूक्ष्मतम (tend to zero) होना चाहिये। इसी लिये सीमा (limit) का अवकलन में बहुत महत्वपूर्ण स्थान है। किसी वक्र (curve) का किसी बिन्दु पर प्रवणता (slope) जानने के लिये उस बिन्दु पर अवकलज की गणना करनी पड़ती है।
अर्थात्
माना साँचा:Math एक फलन है जिसका अवकल नीचे दिखाया गया है-
- उदाहरण
इतिहास
साँचा:Main आधुनिक कैलकुलस का विकास 17वीं सदी के यूरोप में आइजैक न्यूटन और गॉटफ्रीड विल्हेम लीबनिज द्वारा किया गया था (एक दूसरे से स्वतंत्र, पहली बार एक ही समय के आसपास प्रकाशित) लेकिन इसके तत्व पहले प्राचीन मिस्र और बाद में ग्रीस, फिर चीन और मध्य पूर्व में दिखाई दिए। और बाद में मध्ययुगीन यूरोप और भारत में भी।
प्राचीन पूर्ववर्ती
मिस्र
वॉल्यूम और क्षेत्र की गणना, इंटीग्रल कैलकुलस का एक लक्ष्य, मिस्र गणित मॉस्को पेपिरस ({{लगभग|1820}) में पाया जा सकता है } BC), लेकिन सूत्र सरल निर्देश हैं, इसमें कोई संकेत नहीं है कि उन्हें कैसे प्राप्त किया गया था।[५][६]
ग्रीस

अपने कार्य परवलय का चतुर्भुज में एक परवलय के अंतर्गत क्षेत्रफल की गणना करने के लिए। इंटीग्रल कैलकुलस की नींव रखते हुए और सीमा की अवधारणा का पूर्वाभास करते हुए, प्राचीन यूनानी गणितज्ञ कनिडस के यूडॉक्सस (साँचा:लगभग - 337 ईसा पूर्व) ने सूत्रों को सिद्ध करने के लिए थकावट की विधि विकसित की शंकु और पिरामिड की मात्रा.
हेलेनिस्टिक काल के दौरान, इस पद्धति को आर्किमिडीज़ (साँचा:लगभग - साँचा:लगभग) द्वारा विकसित किया गया था, जिन्होंने इसे कैवेलियरी की अवधारणा के साथ जोड़ा था सिद्धांत आर्किमिडीज द्वारा इनफिनिटसिमल्स का उपयोग का एक अग्रदूत—उसे कई समस्याओं को हल करने की इजाजत देता है, जिनका इलाज अब इंटीग्रल कैलकुलस द्वारा किया जाता है। यांत्रिक प्रमेयों की विधि में वह वर्णन करता है, उदाहरण के लिए, एक ठोस गोलार्ध के गुरुत्वाकर्षण केंद्र की गणना, एक [[फ्रटम] के गुरुत्वाकर्षण का केंद्र एक वृत्ताकार परवलय का, और एक क्षेत्र का क्षेत्रफल एक परवलय और उसकी एक सेकेंट लाइन से घिरा हुआ है।[७]
चीन
वृत्त के क्षेत्रफल का पता लगाने के लिए चीन में लियू हुई द्वारा थकावट की विधि का पुन: आविष्कार किया गया था|[८]5वीं शताब्दी में, ज़ू चोंगज़ी ने एक विधि की स्थापना की जिसे बाद में एक गोले का आयतन ज्ञात करने के लिए कैवलियरी का सिद्धांत कहा जाएगा।[९]
मध्यकालीन
इस्लामी दुनिया
मध्य पूर्व में, हसन इब्न अल-हेथम, जिसे लैटिन में अल्हाज़ेन (सी. 965 - सी. 1040 सीई) के रूप में जाना जाता है, ने चौथी शक्तियों के योग के लिए एक सूत्र निकाला। उन्होंने परिणामों का उपयोग उस कार्य को करने के लिए किया जिसे अब एकीकरण कहा जाएगा, जहां अभिन्न वर्गों और चौथी शक्तियों के योग के सूत्रों ने उन्हें एक परवलय के आयतन की गणना करने की अनुमति दी।रोशदी रशीद ने तर्क दिया है कि 12वीं शताब्दी के गणितज्ञ शराफ अल-दीन अल-तुसी ने अपने समीकरणों पर ग्रंथ में घन बहुपदों के व्युत्पन्न का उपयोग किया होगा। राशेड के निष्कर्ष का अन्य विद्वानों ने विरोध किया है, जो तर्क देते हैं कि वह अपने परिणाम अन्य तरीकों से प्राप्त कर सकते थे जिनके लिए फ़ंक्शन के व्युत्पन्न को जानने की आवश्यकता नहीं होती है।[१०]
यूरोप
निरंतरता के गणितीय अध्ययन को 14वीं शताब्दी में ऑक्सफोर्ड कैलकुलेटर्स और निकोल ओरेस्मे जैसे फ्रांसीसी सहयोगियों द्वारा पुनर्जीवित किया गया था। उन्होंने "मर्टन माध्य गति प्रमेय" को साबित कर दिया: कि एक समान रूप से त्वरित शरीर एक समान गति वाले शरीर के समान दूरी तय करता है जिसकी गति त्वरित शरीर के अंतिम वेग से आधी है।[११]
भारत
भास्कर द्वितीय अंतर कलन के कुछ विचारों से परिचित थे और उन्होंने सुझाव दिया कि "अंतर गुणांक" फ़ंक्शन के चरम मूल्य पर गायब हो जाता है।[१२]
14वीं शताब्दी में, भारतीय गणितज्ञों ने विभेदन जैसी एक गैर-कठोर विधि दी, जो कुछ त्रिकोणमितीय कार्यों पर लागू होती थी। संगमग्राम के माधव और केरल स्कूल ऑफ एस्ट्रोनॉमी एंड मैथमेटिक्स ने कैलकुलस के घटकों को बताया, लेकिन विक्टर जे. काट्ज़ के अनुसार वे "दो एकीकृत विषयों के तहत कई अलग-अलग विचारों को संयोजित करने में सक्षम नहीं थे" व्युत्पन्न और अभिन्न में से, दोनों के बीच संबंध दिखाएं, और कैलकुलस को आज हमारे पास मौजूद महान समस्या-समाधान उपकरण में बदल दें[१३]
न्यूटन और लैब्नीज
कैलकुलस के विकास का मुख्य श्रेय लैब्नीज (Leibniz) और आइजक न्यूटन को दिया जाता है। किन्तु इसकी जड़ें बहुत पुरानी हैं।
आधारभूत संकल्पनाएं (concepts)
फलन, सीमा, सातत्य, श्रेणी का अनन्त तक योग, अत्यणु (infinitesimal) आदि संकल्पनाओं की समझ और विकास ने कैलकुलस को जन्म दिया।
कलन का मूलभूत प्रमेय
'समाकलन और अवकलन एक दूसरे के व्युत्क्रम क्रियायें हैं'। इस कथन की पुष्टि करने वाले दो प्रमेयों को कलन का मूलभूत प्रमेय कहा जाता है। इन प्रमेयों की खोज न्यूटन तथा लेइब्नित्ज़ ने की थी।
उपयोग
कैलकुलस का उपयोग सभी भौतिक विज्ञानों, इंजीनियरी, संगणक विज्ञान, सांख्यिकी, अर्थशास्त्र, वाणिज्य, आयुर्विज्ञान, एवं अन्यान्य क्षेत्रों में होता है। जहाँ भी किसी डिजाइन समस्या का गणितीय मॉडल बनाया जा सकता हो और इष्टतम (optimal) हल प्राप्त करना हो, कलन का उपयोग किया जाता है। कलन की सहायता से हम परिवर्तन के अनियत चर दरों (non-constant rates) को भी लेकर आसानी से आगे बढ़ पाते हैं।
सन्दर्भ
इन्हें भी देखें
- अवकल ज्यामिति
- कलन का मूलभूत प्रमेय
- सदिश कैलकुलस
- गणितीय विश्लेषण
- अवकल समीकरण
- अवकलजों की सूची (List of Derivatives)
- समाकलजों की सूची (List of Integrals)
- कैलकुलस का इतिहास
- केरलीय गणित सम्प्रदाय
बाहरी कड़ियाँ
- ↑ साँचा:Cite news
- ↑ साँचा:Cite web
- ↑ साँचा:Cite web
- ↑ साँचा:Cite web
- ↑ साँचा:Cite book
- ↑ साँचा:Cite book
- ↑ See, for example:
- ↑ सन्दर्भ त्रुटि: अमान्य
<ref>टैग;:0नामक संदर्भ की जानकारी नहीं है - ↑ साँचा:Cite book
- ↑ साँचा:Cite journal
- ↑ साँचा:Cite book
- ↑ साँचा:Cite journal
- ↑ साँचा:Cite journal